NUMERICAL INTEGRATORS FOR THE HAMILTONIAN MONTE CARLO METHOD

J. M. Sanz-Serna
Universidad Carlos III de Madrid

Collaborators: S. Blanes (U. Politécnica Valencia), F. Casas (U. Jaume I), E. Akhmatskaya (BCAM), M. Fernández-Pendás (BCAM), T. Radivojevic (BCAM), N. Bou-Rabee (U. Rutgers, Camden)

I: THE PROBLEM

- Wish to sample from target pdf $\propto \exp (-V(q))$.
- Computational effort in HMC mostly spent when numerically integrating the Hamiltonian dynamics associated with the Hamiltonian function $H(q, p)=(1 / 2) p^{2}+V(q)$, i.e. the differential system

$$
(d / d t) q=p, \quad(d / d t) p=-\nabla V(q)
$$

- Which integrator shall we use?
[N. Bou-Rabee \& JMSS, Geometric integrators and the Hamiltonian Monte Carlo method, Acta Numerica, 2018.]
- Verlet is the algorithm of choice. For velocity form, one time-step is

$$
\begin{aligned}
p_{i+1 / 2} & =p_{i}-\frac{h}{2} \nabla_{q} V\left(q_{i}\right), \quad(\text { kick }) \\
q_{i+1} & =q_{i}+h p_{i+1 / 2}, \quad(\mathrm{drift}) \\
p_{i+1} & =p_{i+1 / 2}-\frac{h}{2} \nabla_{q} V\left(q_{i+1}\right) . \quad \text { (kick) }
\end{aligned}
$$

- This is obviously a splitting integrator. Over one time step numerical solution is advanced by map

$$
\psi_{h}=\varphi_{h / 2}^{B} \circ \varphi_{h}^{A} \circ \varphi_{h / 2}^{B}
$$

where φ^{A}, φ^{B} are exact solution maps (flows) of the (Hamiltonian) split systems:

$$
\begin{array}{ll}
(A) & (d / d t) q=p, \quad(d / d t) p=0 \\
(B) & (d / d t) q=0,
\end{array}
$$

- ψ_{h} volume preserving as composition of volume-preserving flows.
- ψ_{h} reversible due to palindromic structure of composition.
- These properties allow for simple accept-reject rule. Proposal (q^{*}, p^{*}) accepted with probability

$$
a^{(n)}=\min \left(1, \exp \left(H\left(q^{(n)}, p^{(n)}\right)-H\left(q^{*}, p^{*}\right)\right)\right)
$$

($\left(q^{(n)}, p^{(n)}\right)$ current state of Markov chain).
[For useful dynamics that do not preserve volume see Y. Fang, JMSS \& RD Skeel, Compressible generalized HMC, J. Chem. Phys. 2014.]

- Points to remember when choosing an integrator:

1. Interested in energy errors $\Delta(q, p)$ after I time-steps:

$$
\Delta=H\left(\Psi_{h, I}(q, p)\right)-H\left(\varphi_{I h}^{H}(q, p)\right)=H\left(\Psi_{h, I}(q, p)\right)-H(q, p),
$$

as only these determine the acceptance probability.
2. High accuracy may not be required, unless number of degrees of freedom is very high. With an energy error $\Delta\left(q^{(n)}, p^{(n)}\right)=1$ the proposal q^{*} will be accepted with probability $\exp (-1)>36 \%$. And for $\Delta\left(q^{(n)}, p^{(n)}\right)=2$ the probability of acceptance is still larger than 13%.
3. The sign of the energy error matters: $\Delta\left(q^{(n)}, p^{(n)}\right)<0$ leads to acceptance of the proposal.

- Conservation of volume and reversibility have an impact on energy errors:

- Expected energy error at stationarity of chain:

$$
\mathbb{E}(\Delta)=\int_{\mathbb{R}^{2 d}} \Delta(q, p) \exp (-H(q, p)) d q d p
$$

from figure we see $\mathbb{E}(\Delta)$ may also be written

$$
-\int_{\mathbb{R}^{2 d}} \Delta(q, p) \exp (-H(\Psi(q, p))) d q d p
$$

or, averaging both expressions,

$$
\begin{aligned}
& \frac{1}{2} \int_{\mathbb{R}^{2 d}} \Delta(q, p)[\exp (-H(q, p))-\exp (-H(\Psi(q, p)))] d q d p \\
& =\frac{1}{2} \int_{\mathbb{R}^{2 d}} \Delta(q, p)[1-\exp (-\Delta(q, p))] \exp (-H(q, p)) d q d p
\end{aligned}
$$

From here one may prove

$$
0 \leq \mathbb{E}(\Delta) \leq \int_{\mathbb{R}^{2 d}} \Delta(q, p)^{2} \exp (-H(q, p)) d q d p
$$

Conclusions:

For a volume-preserving, reversible integrator, energy errors are, on average, much smaller than one would think.

Asymptotic properties in the limit $h \rightarrow 0$ (i.e. order, leading coefficients of local error expansion) of limited interest as in practice h will not be 'small'.

Hence: analyze integrators without assuming smallness of h.

But this is only possible for model problems ...

II: A MODEL PROBLEM

- Harmonic oscillator:

$$
\begin{gathered}
H=\frac{1}{2}\left(p^{2}+q^{2}\right), \quad q, p \in \mathbb{R} \\
\frac{d}{d t} q=-p, \quad \frac{d}{d t} p=q
\end{gathered}
$$

- From sampling point of view, target is the standard univariate Gaussian distribution. In matrix form, the solution flow is given by

$$
\left[\begin{array}{l}
q(t) \\
p(t)
\end{array}\right]=M_{t}\left[\begin{array}{l}
q(0) \\
p(0)
\end{array}\right], \quad M_{t}=\left[\begin{array}{rr}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]
$$

- Then, assuming stability, the one-step numerical matrix is:

$$
\tilde{M}_{h}=\left[\begin{array}{cc}
\cos \theta_{h} & \chi_{h} \sin \theta_{h} \\
-\chi_{h}^{-1} \sin \theta_{h} & \cos \theta_{h}
\end{array}\right]
$$

and, over i steps:

$$
\tilde{M}_{h}^{i}=\left[\begin{array}{cc}
\cos \left(i \theta_{h}\right) & \chi_{h} \sin \left(i \theta_{h}\right) \\
-\chi_{h}^{-1} \sin \left(i \theta_{h}\right) & \cos \left(i \theta_{h}\right)
\end{array}\right],
$$

numerical solution stays on an ellipse.

- θ_{h} governs phase errors (here irrelevant).
- χ_{h} governs shape of numerical orbits/energy errors. $\chi_{h} \equiv 1$ would be ideal (then numerical solution stay on circles, no energy error).

The expectation of the random variable $\Delta\left(q_{0}, p_{0}\right)$ is given by:
[S. Blanes, F. Casas, JMSS, SIAM J. Sci. Comput. 2014]

$$
\mathbb{E}(\Delta)=\sin ^{2}\left(I \theta_{h}\right) \rho(h),
$$

where

$$
\rho(h)=\frac{1}{2}\left(\chi_{h}^{2}+\frac{1}{\chi_{h}^{2}}-2\right)=\frac{1}{2}\left(\chi_{h}-\frac{1}{\chi_{h}}\right)^{2} \geq 0 .
$$

Accordingly

$$
0 \leq \mathbb{E}(\Delta) \leq \rho(h)
$$

Illustration:

Velocity Verlet is stable for $0<h<2$, which is optimal.

For stable values of h :

$$
\mathbb{E}(\Delta) \leq \frac{h^{4}}{32\left(1-\frac{h^{2}}{4}\right)}
$$

For $h \leq 1$ the expected energy error is $\leq 1 / 24$.

Halving h to $h \leq 1 / 2$, leads to an expected energy error $\leq 1 / 480$!

Extension: For a d-variate Gaussian target distribution (d coupled linear oscillators), assuming stability,

$$
\mathbb{E}(\Delta) \leq \sum_{j=1}^{d} \rho\left(h \omega_{j}\right)
$$

where ω_{j} are the angular frequencies of the oscillators (inverses of the standard deviations).

Note $h \omega_{j}$ is a nondimensional combination and stability requires $h \omega_{j}<2$ for each j.

III: IMPROVING ON VERLET

- Split-step methods suggest themselves. Very easy implementation (sequence of drifts/kicks just as Verlet). They are symplectic, and, if palindromic, reversible.
- Many antecedents in literature: free parameters have been used to boost order and/or reduce error constants.
- Here we minimize

$$
\|\rho\|_{(\bar{h})}=\max _{0<h<\bar{h}} \rho(h),
$$

where \bar{h} is suitable nondimensional maximum step-length ($\bar{h} \leq$ length of stability interval).

- If method uses r evaluations of ∇V per step, we choose $\bar{h}=r$, since Verlet works well with $h \approx 1$ for relevant numbers of degrees of freedom.

Two evaluations of ∇V per step:

- One-parameter family of palindromic formulae (three kicks, two drifts):

$$
\psi_{h}=\varphi_{b h}^{B} \circ \varphi_{(1 / 2) h}^{A} \circ \varphi_{(1-2 b) h}^{B} \circ \varphi_{(1 / 2) h}^{A} \circ \varphi_{b h}^{B}
$$

- When $b=1 / 4$ method is concatenation of two-steps (of step-length $h / 2$) of (position) Verlet method.
- All methods are second order accurate. Minimal error constant $b \approx$ 0.1932 . As b increases from 0.19 to 0.25 integrator may operate with larger values of h but is less accurate.
- Here a chosen to minimize $\max \rho(h), 0<h<2$. This leads to the optimal choice $b \approx 0.2118$.

Three evaluations of ∇V per step:

- Two-parameter family of palindromic formulae (three kicks, two drifts):

$$
\varphi_{b h}^{B} \circ \varphi_{a h}^{A} \circ \varphi_{(1 / 2-b) h}^{B} \circ \varphi_{(1-2 a) h}^{A} \circ \varphi_{(1 / 2-b) h}^{B} \circ \varphi_{a h}^{A} \circ \circ \varphi_{b h}^{B} .
$$

- When $a=1 / 3 b=1 / 6$ method is concatenation of three-steps (of step-length $h / 3$) of velocity Verlet method.
- Order four is possible and has been considered in this context.
- Here minimize $\max \rho(h), 0<h<3$. This is tricky: generically methods have stability intervals shorter than $0<h<3$. (The fourth-order method has stability interval $0<h<1.573$.)

Numerical comparison of three-stage algorithms:

- Canonical distribution for an alkane molecule with 27 degrees of freedom. (Not too many degrees of freedom and away from Gaussian model.)
- One force evaluation every 8 fs (good for Verlet).
- Average and standard deviation of acceptance rate:

Integrator	μ	σ
Verlet	77.7%	2.11%
Fourth order	0%	0%
Minimum ρ	96.7%	0.41%

AIA (adaptive integrator approach) [M Fernández-Pendás, E Akhmatskaya, JMSS, J. Comput. Phys. 2016]

Go back to two stage family. Above, free parameter b chosen once and for all to minimize ρ over $0<h<2$.

In AIA steplength chosen according to computational budget. Then estimate shortest interval ($0, h^{\star}$) that contains all products $h \omega_{j}$ and minimize ρ over $0<h<h^{\star}$.

Incorporated to molecular dynamics popular software GROMACS.

Sampling for a large biomolecule. If Δt is large, AIA chooses Verlet. If user may operate smaller values of Δt, AIA automatically picks an integrator with a shorter stability interval and enhanced accuracy.

