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I: THE PROBLEM
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•Wish to sample from target pdf ∝ exp(−V (q)).

• Computational effort in HMC mostly spent when numerically integra-
ting the Hamiltonian dynamics associated with the Hamiltonian function
H(q, p) = (1/2)p2 + V (q), i.e. the differential system

(d/dt)q = p, (d/dt)p = −∇V (q).

•Which integrator shall we use?

[ N. Bou-Rabee & JMSS, Geometric integrators and the Hamiltonian Monte
Carlo method, Acta Numerica, 2018.]
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• Verlet is the algorithm of choice. For velocity form, one time-step is

pi+1/2 = pi −
h

2
∇qV (qi), (kick)

qi+1 = qi + h pi+1/2, (drift)

pi+1 = pi+1/2 −
h

2
∇qV (qi+1). (kick)

• This is obviously a splitting integrator. Over one time step numerical
solution is advanced by map

ψh = ϕBh/2 ◦ ϕ
A
h ◦ ϕ

B
h/2,

where ϕA, ϕB are exact solution maps (flows) of the (Hamiltonian) split
systems:

(A) (d/dt)q = p, (d/dt)p = 0,

(B) (d/dt)q = 0, (d/dt)p = −∇V (q).
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• ψh volume preserving as composition of volume-preserving flows.

• ψh reversible due to palindromic structure of composition.

• These properties allow for simple accept-reject rule. Proposal (q∗, p∗)
accepted with probability

a(n) = min
(

1, exp
(
H(q(n), p(n))−H(q∗, p∗)

))
.

((q(n), p(n)) current state of Markov chain).

[For useful dynamics that do not preserve volume see Y. Fang, JMSS &
RD Skeel, Compressible generalized HMC, J. Chem. Phys. 2014.]
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• Points to remember when choosing an integrator:

1. Interested in energy errors ∆(q, p) after I time-steps:

∆ = H(Ψh,I(q, p))−H(ϕHIh(q, p)) = H(Ψh,I(q, p))−H(q, p),

as only these determine the acceptance probability.

2. High accuracy may not be required, unless number of degrees of fre-
edom is very high. With an energy error ∆(q(n), p(n)) = 1 the pro-
posal q∗ will be accepted with probability exp(−1) > 36%. And for
∆(q(n), p(n)) = 2 the probability of acceptance is still larger than
13%.

3. The sign of the energy error matters: ∆(q(n), p(n)) < 0 leads to
acceptance of the proposal.
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•Conservation of volume and reversibility have an impact on energy errors:

7



• Expected energy error at stationarity of chain:

E(∆) =

∫
R2d

∆(q, p) exp
(
−H(q, p)

)
dq dp;

from figure we see E(∆) may also be written

−
∫
R2d

∆(q, p) exp
(
−H(Ψ(q, p))

)
dq dp,

or, averaging both expressions,

1
2

∫
R2d ∆(q, p)

[
exp

(
−H(q, p)

)
− exp

(
−H(Ψ(q, p))

)]
dq dp

= 1
2

∫
R2d ∆(q, p)

[
1− exp

(
−∆(q, p)

)]
exp

(
−H(q, p)

)
dq dp.

From here one may prove

0 ≤ E(∆) ≤
∫
R2d

∆(q, p)2 exp
(
−H(q, p)

)
dq dp.
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Conclusions:

For a volume-preserving, reversible integrator, energy errors are, on ave-
rage, much smaller than one would think.

Asymptotic properties in the limit h → 0 (i.e. order, leading coefficients of
local error expansion) of limited interest as in practice h will not be ‘small’.

Hence: analyze integrators without assuming smallness of h.

But this is only possible for model problems . . .
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II: A MODEL PROBLEM
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• Harmonic oscillator:

H =
1

2
(p2 + q2), q, p ∈ R,

d

dt
q = −p,

d

dt
p = q.

• From sampling point of view, target is the standard univariate Gaussian
distribution. In matrix form, the solution flow is given by[

q(t)
p(t)

]
= Mt

[
q(0)
p(0)

]
, Mt =

[
cos t sin t
− sin t cos t

]
.
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• Then, assuming stability, the one-step numerical matrix is:

M̃h =

[
cos θh χh sin θh

−χ−1
h sin θh cos θh

]
and, over i steps:

M̃ i
h =

[
cos(iθh) χh sin(iθh)

−χ−1
h sin(iθh) cos(iθh)

]
,

numerical solution stays on an ellipse.

• θh governs phase errors (here irrelevant).

• χh governs shape of numerical orbits/energy errors. χh ≡ 1 would be
ideal (then numerical solution stay on circles, no energy error).
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The expectation of the random variable ∆(q0, p0) is given by:

[S. Blanes, F. Casas, JMSS, SIAM J. Sci. Comput. 2014]

E(∆) = sin2(Iθh) ρ(h),

where

ρ(h) =
1

2

(
χ2
h +

1

χ2
h

− 2

)
=

1

2

(
χh −

1

χh

)2

≥ 0.

Accordingly

0 ≤ E(∆) ≤ ρ(h).
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Illustration:

Velocity Verlet is stable for 0 < h < 2, which is optimal.

For stable values of h:

E(∆) ≤
h4

32(1− h2

4 )
.

For h ≤ 1 the expected energy error is ≤ 1/24.

Halving h to h ≤ 1/2, leads to an expected energy error ≤ 1/480!
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Extension: For a d-variate Gaussian target distribution (d coupled linear
oscillators), assuming stability,

E(∆) ≤
d∑

j=1

ρ(hωj),

where ωj are the angular frequencies of the oscillators (inverses of the
standard deviations).

Note hωj is a nondimensional combination and stability requires hωj < 2

for each j.
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III: IMPROVING ON VERLET
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• Split-step methods suggest themselves. Very easy implementation (se-
quence of drifts/kicks just as Verlet). They are symplectic, and, if palindro-
mic, reversible.

•Many antecedents in literature: free parameters have been used to boost
order and/or reduce error constants.

• Here we minimize

‖ρ‖(h̄) = max
0<h<h̄

ρ(h),

where h̄ is suitable nondimensional maximum step-length (h̄ ≤ length of
stability interval).

• If method uses r evaluations of ∇V per step, we choose h̄ = r, since
Verlet works well with h ≈ 1 for relevant numbers of degrees of freedom.
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Two evaluations of ∇V per step:

• One-parameter family of palindromic formulae (three kicks, two drifts):

ψh = ϕBbh ◦ ϕ
A
(1/2)h ◦ ϕ

B
(1−2b)h ◦ ϕ

A
(1/2)h ◦ ϕ

B
bh.

• When b = 1/4 method is concatenation of two-steps (of step-length
h/2) of (position) Verlet method.

• All methods are second order accurate. Minimal error constant b ≈
0.1932. As b increases from 0.19 to 0.25 integrator may operate with
larger values of h but is less accurate.

• Here a chosen to minimize max ρ(h), 0 < h < 2. This leads to the
optimal choice b ≈ 0.2118.
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Three evaluations of ∇V per step:

• Two-parameter family of palindromic formulae (three kicks, two drifts):

ϕBbh ◦ ϕ
A
ah ◦ ϕ

B
(1/2−b)h ◦ ϕ

A
(1−2a)h ◦ ϕ

B
(1/2−b)h ◦ ϕ

A
ah ◦ ◦ϕ

B
bh.

• When a = 1/3 b = 1/6 method is concatenation of three-steps (of
step-length h/3) of velocity Verlet method.

• Order four is possible and has been considered in this context.

• Here minimize max ρ(h), 0 < h < 3. This is tricky: generically methods
have stability intervals shorter than 0 < h < 3. (The fourth-order method
has stability interval 0 < h < 1.573.)
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Numerical comparison of three-stage algorithms:

•Canonical distribution for an alkane molecule with 27 degrees of freedom.
(Not too many degrees of freedom and away from Gaussian model.)

• One force evaluation every 8 fs (good for Verlet).

• Average and standard deviation of acceptance rate:

Integrator µ σ
Verlet 77.7% 2.11%
Fourth order 0% 0%
Minimum ρ 96.7% 0.41%
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AIA (adaptive integrator approach) [M Fernández-Pendás, E Akhmatskaya,
JMSS, J. Comput. Phys. 2016]

Go back to two stage family. Above, free parameter b chosen once and for
all to minimize ρ over 0 < h < 2.

In AIA steplength chosen according to computational budget. Then esti-
mate shortest interval (0, h?) that contains all products hωj and minimize
ρ over 0 < h < h?.

Incorporated to molecular dynamics popular software GROMACS.
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Sampling for a large biomolecule. If ∆t is large, AIA chooses Verlet. If user
may operate smaller values of ∆t, AIA automatically picks an integrator
with a shorter stability interval and enhanced accuracy.

10 15 20 25
∆t / number of stages (fs)

0

10

20

30

40

50

60

70

80

90

100

A
R

 (
%

)

VV
BCSS
AIA
Predescu et al.

24


