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Abstract

For a prime p and a positive integer n, the standard zeta function
LF (s) is considered, attached to an Hermitian modular form
F =

∑
H A(H)qH on the Hermitian upper half plane Hn of degree

n, where H runs through semi-integral positive de�nite Hermitian
matrices of degree n, i.e. H ∈ Λn(O) over the integers O of an
imaginary quadratic �eld K , where qH = exp(2πiTr(HZ )).
Analytic p-adic continuation of their zeta functions constructed by
A.Bouganis in the ordinary case (in [Bou16] is presently extended
to the admissible case via growing p-adic measures. Previously this
problem was solved for the Siegel modular forms, [CourPa], [BS00].
Present main result is stated in terms of the Hodge polygon
PH(t) : [0, d ]→ R and the Newton polygon
PN(t) = PN,p(t) : [0, d ]→ R of the zeta function LF (s) of degree
d = 4n. Main theorem gives a p-adic analytic interpolation of the L
values in the form of certain integrals with respect to Mazur-type
measures.
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p-adic zeta functions of modular forms
Since the p-adic zeta function of Kubota-Leopoldt was constructed
by p-adic interpolation of zeta-values ζ(1− k) = −Bk/k(k ≥ 1)
[KuLe64], also p-adic zeta functions of various modular forms were
constructed, such as p-adic interpolation of the special values

L∆(s, χ) =
∞∑
n=1

χ(n)τ(n)n−s , (s = 1, 2, · · · , 11), ∆ =
∞∑
n=1

τ(n)qn,

for the Ramanujan function τ(n) twisted by Dirichlet characters
χ : (Z/prZ)∗ → C∗. Interpolation done in the elliptic and Hilbert
modular cases by Yu.I.Manin and B.Mazur, via modular symbols
and p-adic integration, see [Ma73], [Ma76]).
In the Siegel modular case Sp(2n,Z) the p-adic standard zeta
functions were constructed in [Pa88], [Pa91] via Rankin-Selberg
Andrianov's identity (n even), and [BS00] via doubling method.
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Hermitian modular group Γn,K and the standard zeta
function Z(s, f) (de�nitions)

Let θ = θK be the quadratic character attached to K , n′ =
[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK )|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
,

Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

(de�ned via Hecke's eigenvalues: f|T (a) = λ(a)f, a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X ) = 2n, the Satake parameters ti ,q, i = 1, · · · , n),

D(s, f) = Z(s − `

2
+

1
2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n, and motivic weight `− 1).

Main result: p-adic interpolation of all critical values D(s, f, χ)
normalized by ×ΓD(s)/Ωf , in the critical strip n ≤ s ≤ `− n for all
χ mod pr in both bounded or unbounded case , i.e. when the

product αf =
(∏

q|p
∏n

i=1
tq,i

)
p−n(n+1) is not a p-adic unit.

5

Moi
Texte surligné 



Hermitian modular group Γn,K and the standard zeta
function Z(s, f) (de�nitions)

Let θ = θK be the quadratic character attached to K , n′ =
[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK )|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
,

Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

(de�ned via Hecke's eigenvalues: f|T (a) = λ(a)f, a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X ) = 2n, the Satake parameters ti ,q, i = 1, · · · , n),

D(s, f) = Z(s − `

2
+

1
2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n, and motivic weight `− 1).

Main result: p-adic interpolation of all critical values D(s, f, χ)
normalized by ×ΓD(s)/Ωf , in the critical strip n ≤ s ≤ `− n for all
χ mod pr in both bounded or unbounded case , i.e. when the

product αf =
(∏

q|p
∏n

i=1
tq,i

)
p−n(n+1) is not a p-adic unit.

6



Hermitian modular group Γn,K and the standard zeta
function Z(s, f) (de�nitions)

Let θ = θK be the quadratic character attached to K , n′ =
[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK )|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
,

Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

(de�ned via Hecke's eigenvalues: f|T (a) = λ(a)f, a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X ) = 2n, the Satake parameters ti ,q, i = 1, · · · , n),

D(s, f) = Z(s − `

2
+

1
2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n, and motivic weight `− 1).

Main result: p-adic interpolation of all critical values D(s, f, χ)
normalized by ×ΓD(s)/Ωf , in the critical strip n ≤ s ≤ `− n for all
χ mod pr in both bounded or unbounded case , i.e. when the

product αf =
(∏

q|p
∏n

i=1
tq,i

)
p−n(n+1) is not a p-adic unit.

7



Hermitian modular group Γn,K and the standard zeta
function Z(s, f) (de�nitions)

Let θ = θK be the quadratic character attached to K , n′ =
[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK )|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
,

Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

(de�ned via Hecke's eigenvalues: f|T (a) = λ(a)f, a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X ) = 2n, the Satake parameters ti ,q, i = 1, · · · , n),

D(s, f) = Z(s − `

2
+

1
2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n, and motivic weight `− 1).

Main result: p-adic interpolation of all critical values D(s, f, χ)
normalized by ×ΓD(s)/Ωf , in the critical strip n ≤ s ≤ `− n for all
χ mod pr in both bounded or unbounded case , i.e. when the

product αf =
(∏

q|p
∏n

i=1
tq,i

)
p−n(n+1) is not a p-adic unit.

8



The idea of motivic normalization: Ikeda's lifting [Ike08]
The standard Gamma factor of Ikeda's lifting, denoted by f, of an
elliptic modular form f extends to a general (not necessarily lifted)
Hermitian modular form f of weight `, used as a pattern, namely

S2k+1(Γ0(D), θ) 3 f  f = Lift(f ) ∈ S2k+2n′(ΓK ,n), if n = 2n′ is even (E )

S2k(SL(Z)) 3 f  f = Lift(f ) ∈ S2k+2n′(ΓK ,n), if n = 2n′ + 1 is odd (O)

the standard L− function of f = Lift(n)(f ) is Z(s, f) =
n∏

i=1

L(s + k + n′ − i + (1/2), f )L(s + k + n′ − i + (1/2), f , θ) [Ike08]

=
n−1∏
i=0

L(s + `/2− i − (1/2), f )L(s + `/2− i − (1/2), f , θ).

because in the lifted case k + n′ = `/2, and the Gamma factor of
the standard zeta function with the symmetry s 7→ 1− s becomes
(see p.58) ΓZ(s) =

∏n−1
i=0

ΓC(s + `/2− i − (1/2))2. This Gamma

factor suggests the following motivic normalization
D(s) = Z(s − (`/2) + (1/2)) with the Gamma factor

ΓD(s) = ΓZ(s − (`/2) + (1/2)) =
n−1∏
i=0

ΓC(s − i)2,

and the L-function D(s) satis�es the symmetry s 7→ `− s of
motivic weight `− 1 with the slopes 2 · 0, 2 · 1, . . . 2 · (n − 1),
2 · (`− n), · · · , 2 · (`− 1), so that Deligne's critical values are at
s = n, . . . , s = `− n.
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General zeta functions: critical values and coe�cients
More general zeta functions are Euler products of degree d

D(s, χ) =
∞∑
n=1

χ(n)ann
−s =

∏
p

1
Dp(χ(p)p−s)

, ΛD(s, χ) = ΓD(s)D(s, χ),

where degDp(X ) = d for all but �nitely many p, and Dp(0) = 1.

In many cases algebraicity of the zeta values was proven as

D∗(s0, χ)

Ω±D
∈ Q({χ(n), an}n), where D∗(s, χ) is normalized by ΓD,

at critical points s0 ∈ Zcrit as linear combinations of coe�cients an
dividing out periods Ω±D, where D∗(s0, χ) = ΛD(s0, χ) if h`,` = 0.

In p-adic analysis, the Tate �eld is used Cp = ˆ̄Qp, the completion
of an algebraic closure Q̄p, in place of C. Let us �x embeddings{

ip : Q̄ ↪→ Cp

i∞ : Q̄ ↪→ C,
and try to continue analytically these zeta values

to s ∈ Zp, χ mod pr .
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Main result stated with Hodge/Newton polygons of D(s)
The Hodge polygon PH(t) : [0, d ]→ R of the function D(s) and
the Newton polygon PN,p(t) : [0, d ]→ R at p are piecewise linear:

The Hodge polygon of pure weight w has the slopes j of
lengthj = hj ,w−j given by Serre's Gamma factors of the functional
equation of the form s 7→ w + 1− s, relating
ΛD(s, χ) = ΓD(s)D(s, χ) and ΛDρ(w + 1− s, χ̄), where ρ is the
complex conjugation of an, and ΓD(s) = ΓDρ(s) equals to the
product ΓD(s) =

∏
j≤w

2

Γj ,w−j(s), where

Γj ,w−j(s) =

{
ΓC(s − j)h

j,w−j
, if j < w ,

ΓR(s − j)h
j,j
+ ΓR(s − j + 1)h

j,j
− , if 2j = w , where

ΓR(s) = π−
s
2 Γ
( s
2

)
, ΓC(s) = ΓR(s)ΓR(s + 1) = 2(2π)−sΓ(s),

hj ,j = hj ,j+ + hj ,j− ,
∑
j

hj ,w−j = d .

The Newton polygon at p is the convex hull of points
(i , ordp(ai )) (i = 0, . . . , d); its slopes λ are the p-adic valuations
ordp(αi ) of the inverse roots αi of Dp(X ) ∈ Q̄[X ] ⊂ Cp[X ]:
lengthλ = ]{i | ordp(αi ) = λ}.
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p-adic analytic interpolation of D(s, f, χ)
The result expresses the zeta values as integrals with respect to
p-adic Mazur-type measures. These measures are constructed from
the Fourier coe�cients of Hermitian modular forms, and from
eigenvalues of Hecke operators on the unitary group.

Pre-ordinary case: PH(t) = PN,p(t) at t = d
2
The integrality of

measures is proven by T.Bouganis [Bou16], representing
D∗(s, χ) = ΓD(s)D(s, χ) as a Rankin-Selberg type integral at
critical points s = m. Coe�cients of modular forms in this integral
satisfy Kummer-type congruences and produce certain bounded
measures µD from integral representations and Petersson product,
[CourPa]. For the case of p inert in K , see [Bou16].

Admissible case: h = PN(d
2

)− PH(d
2

) > 0 The zeta distributions
are unbounded, but their sequence produce h-admissible (growing)
measures of Amice-Vélu-type, allowing to integrate any continuous
characters y ∈ Hom(Z∗p,C∗p) = Yp. A general result is used on the
existence of h-admissible (growing) measures from binomial
congruences for the coe�cients of Hermitian modular forms. Their
p-adic Mellin transforms LD(y) =

∫
Z∗p

y(x)dµD(x), LD : Yp → Cp

give p-adic analytic interpolation of growth loghp(·) of the L-values:

the values LD(χxmp ) are integrals given by ip

(
D∗(m, f, χ)

Ωf

)
∈ Cp.
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p-adic analytic interpolation of D(s, f, χ)
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A Hermitian modular form of weight ` with character σ
is a holomorphic function f on Hn (n ≥ 2) such that
f(g〈Z 〉) = σ(g)f(Z )j(g ,Z )` for any g ∈ Γn,K . Here σ be a

character of Γ
(n)
K , trivial on

{(
1n

0

B
1n

)}
, and for Z ∈ Hn, put

g〈Z 〉 = (AZ + B)(CZ + D)−1, j(g ,Z ) = det(CZ + D).

Fourier expansions: a semi-integral Hermitian matrix is a Hermitian
matrix H ∈ (

√
−DK )−1Mn(O) whose diagonal entries are integral.

Denote the set of semi-integral Hermitian matrices by Λn(O),
the subset of its positive de�nite elements is Λn(O)+, with O = OK .

A Hermitian modular form f is called a cusp form if it has a Fourier
expansion of the form f(Z ) =

∑
H∈Λn(O)+

A(H)qH . Denote the space

of cusp forms of weight ` with character σ by S`(Γn,K , σ).
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The standard zeta function of a Hermitian modular form
For all integral ideals a ⊂ O let T (a) denotes the Hecke operator
associated to it as in [Shi00], page 162, using the action of double
cosets ΓξΓ with ξ = diag(D̂,D), (det(D)) = (α), D̂ = (D∗)−1,
α ∈ a.

Consider a non-zero Hermitian modular form f ∈M`(Γ), for a
(congruence) subgroup Γ ⊂ Γn,K , and assume f|T (a) = λ(a)f with
λ(a) ∈ C for all integral ideals a ⊂ O. Then

Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

the sum is over all integral ideals of OK .

This series has an Euler product representation
Z(s, f) =

∏
q(Zq(N(q)−s)−1, where the product is over all prime

ideals of OK , Zq(X ) is the numerator of the series∑
r≥0 λ(qr )X r ∈ C(X ), computed by Shimura as follows.
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Euler factors of the standard zeta function, [Shi00], p. 171
The Euler factors Zq(X ) in the Hermitian modular case at the
prime ideal q of OK are

(i) Zq(X ) =
n∏

i=1

(
(1− N(q)n−1tq,iX )(1− N(q)nt−1q,i X )

)−1
,

if qρ = q and q 6 | c, (the inert case outside level c),

(ii) Zq1(X1)Zq2(X2) =
2n∏
i=1

(
(1− N(q1)2nt−1q1q2,i

X1)(1− N(q2)−1tq1q2,iX2)
)−1

,

if q1 6= q2, q
ρ
1

= q2 and qi 6 | c for i = 1, 2 (the split case outside level) ,

(iii) Zq(X ) =
n∏

i=1

(
1− N(q)n−1tq,iX

)−1
, if qρ = q and q|c (inert level divisors ),

(iv) Zq1(X1)Zq2(X2) =
n∏

i=1

(
(1− N(q1)n−1t−1q1q2,i

X1)(1− N(q2)n−1tq1q2,iX2)
)−1

,

if q1 6= q2, qi |c for i = 1, 2 (split level divisors).

where the t?,i above for ? = q, q1q2, are the Satake parameters of
the eigenform f.

26



Euler factors of the standard zeta function, [Shi00], p. 171
The Euler factors Zq(X ) in the Hermitian modular case at the
prime ideal q of OK are

(i) Zq(X ) =
n∏

i=1

(
(1− N(q)n−1tq,iX )(1− N(q)nt−1q,i X )

)−1
,

if qρ = q and q 6 | c, (the inert case outside level c),

(ii) Zq1(X1)Zq2(X2) =
2n∏
i=1

(
(1− N(q1)2nt−1q1q2,i

X1)(1− N(q2)−1tq1q2,iX2)
)−1

,

if q1 6= q2, q
ρ
1

= q2 and qi 6 | c for i = 1, 2 (the split case outside level) ,

(iii) Zq(X ) =
n∏

i=1

(
1− N(q)n−1tq,iX

)−1
, if qρ = q and q|c (inert level divisors ),

(iv) Zq1(X1)Zq2(X2) =
n∏

i=1

(
(1− N(q1)n−1t−1q1q2,i

X1)(1− N(q2)n−1tq1q2,iX2)
)−1

,

if q1 6= q2, qi |c for i = 1, 2 (split level divisors).

where the t?,i above for ? = q, q1q2, are the Satake parameters of
the eigenform f.

27



Euler factors of the standard zeta function, [Shi00], p. 171
The Euler factors Zq(X ) in the Hermitian modular case at the
prime ideal q of OK are

(i) Zq(X ) =
n∏

i=1

(
(1− N(q)n−1tq,iX )(1− N(q)nt−1q,i X )

)−1
,

if qρ = q and q 6 | c, (the inert case outside level c),

(ii) Zq1(X1)Zq2(X2) =
2n∏
i=1

(
(1− N(q1)2nt−1q1q2,i

X1)(1− N(q2)−1tq1q2,iX2)
)−1

,

if q1 6= q2, q
ρ
1

= q2 and qi 6 | c for i = 1, 2 (the split case outside level) ,

(iii) Zq(X ) =
n∏

i=1

(
1− N(q)n−1tq,iX

)−1
, if qρ = q and q|c (inert level divisors ),

(iv) Zq1(X1)Zq2(X2) =
n∏

i=1

(
(1− N(q1)n−1t−1q1q2,i

X1)(1− N(q2)n−1tq1q2,iX2)
)−1

,

if q1 6= q2, qi |c for i = 1, 2 (split level divisors).

where the t?,i above for ? = q, q1q2, are the Satake parameters of
the eigenform f.

28



Euler factors of the standard zeta function, [Shi00], p. 171
The Euler factors Zq(X ) in the Hermitian modular case at the
prime ideal q of OK are

(i) Zq(X ) =
n∏

i=1

(
(1− N(q)n−1tq,iX )(1− N(q)nt−1q,i X )

)−1
,

if qρ = q and q 6 | c, (the inert case outside level c),

(ii) Zq1(X1)Zq2(X2) =
2n∏
i=1

(
(1− N(q1)2nt−1q1q2,i

X1)(1− N(q2)−1tq1q2,iX2)
)−1

,

if q1 6= q2, q
ρ
1

= q2 and qi 6 | c for i = 1, 2 (the split case outside level) ,

(iii) Zq(X ) =
n∏

i=1

(
1− N(q)n−1tq,iX

)−1
, if qρ = q and q|c (inert level divisors ),

(iv) Zq1(X1)Zq2(X2) =
n∏

i=1

(
(1− N(q1)n−1t−1q1q2,i

X1)(1− N(q2)n−1tq1q2,iX2)
)−1

,

if q1 6= q2, qi |c for i = 1, 2 (split level divisors).

where the t?,i above for ? = q, q1q2, are the Satake parameters of
the eigenform f.

29



The standard motivic-normalized zeta D(s, f, χ)
The standard zeta function of f is de�ned by means of the
p-parameters as the following Euler product:

D(s, f, χ) =
∏
p

2n∏
i=1

{(
1− χ(p)αi (p)

ps

)(
1− χ(p)α4n−i (p)

ps

)}−1
,

where χ is an arbitrary Dirichlet character. The p�parameters
α1(p), . . . , α4n(p) of D(s, f, χ) for p not dividing the level C of the
form f are related to the the 4n characteristic numbers

α1(p), · · · , α2n(p), α2n+1(p), · · · , α4n(p)

of the product of all q-factors Zq(Nq(`−1)/2)X )−1 for all q|p, which
is a polynomial of degree 4n of the variable X = p−s (for almost all
p) with coe�cients in a number �eld T = T (f) .

There is a relation between the two normalizations
Z(s − `

2
+ 1

2
, f) = D(s, f) explained in [Ha97] for general zeta

functions.
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Description of the Main theorem
Let Ωf be a period attached to an Hermitian cusp eigenform f,
D(s, f) = Z(s − `

2
+ 1

2
, f) the standard zeta function, and

αf = αf,p =

∏
q|p

n∏
i=1

tq,i

 p−n(n+1), h = ordp(αf,p),

The number αf turns out to be an eigenvalue of Atkin's type
operator Up :

∑
H AHq

H 7→
∑

H ApHq
H on some f0, and

h = PN(d
2

)− PH(d
2

).
De�nition. Let M be a O-module of �nite rank where O ⊂ Cp. For
h ≥ 1, consider the following Cp-vector spaces of functions on Z∗p :
Ch ⊂ Cloc−an ⊂ C. Then
- a continuous homomorphism µ : C→ M is called a (bounded)
measure M-valued measure on Z∗p.
- µ : Ch → M is called an h admissible measure M-valued measure
on Z∗p measure if the following growth condition is satis�ed∣∣∣∣∣

∫
a+(pv )

(x − a)jdµ

∣∣∣∣∣
p

≤ p−v(h−j)

for j = 0, 1, ..., h− 1, and et Yp = Homcont(Z∗p,C∗p) be the space of
de�nition of p-adic Mellin transform

Theorem ([Am-V], [MTT]) For an h-admissible measure µ, the
Mellin transform Lµ : Yp → Cp exists and has growth o(logh) (with
in�nitely many zeros).
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Main Theorem.
Let f be a Hermitian cusp eigenform of degree n ≥ 2 and of weight
` > 4n + 2. There exist distributions µD,s for s = n, · · · , `− n with
the properties:

i) for all pairs (s, χ) such that s ∈ Z with n ≤ s ≤ `− n,∫
Z∗p
χdµD,s = Ap(s, χ)

D∗(s, f, χ)

Ωf

(under the inclusion ip), with elementary factors
Ap(s, χ) =

∏
q|p Aq(s, χ) including a �nite Euler product, Satake

parameters tq,i , gaussian sums, the conductor of χ; the integral is a
�nite sum.
(ii) if ordp

(
(
∏

q|p
∏n

i=1
tq,i )p

−n(n+1)
)

= 0 then the above

distributions µD,s are bounded measures, we set µD = µD,s∗ and
the integral is de�ned for all continuous characters
y ∈ Hom(Z∗p,C∗p) =: Yp.

Their Mellin transforms LµD(y) =
∫
Z∗p

ydµD, LµD : Yp → Cp,

give bounded p-adic analytic interpolation of the above L-values to
on the Cp-analytic group Yp; and these distributions are related by:∫
X
χdµD,s =

∫
X
χx s

∗−sdµ∗D, X = Z∗p, where s∗ = `− n, s∗ = n.
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Main theorem (continued)
(iii) in the admissible case assume that

0 < h ≤ s∗ − s∗ + 1
2

=
`+ 1− 2n

2
, where

h = ordp

(
(
∏

q|p
∏n

i=1
tq,i )p

−n(n+1)
)
> 0, Then there exist

h�admissible measures µD whose integrals
∫
Z∗p
χx s

∗−s
p dµD are given

by ip

(
Ap(s, χ)

D∗(s, f, χ)

Ωf

)
∈ Cp with Ap(s, χ) as in (i); their

Mellin transforms LD(y) =
∫
Z∗p

ydµD, belong to the type o(log xhp ).

(iv) the functions LD are determined by (i)-(iii).
Remarks.
(a) Interpretation of s∗: the smallest of the "big slopes" of PH

(b) Interpretation of s∗− 1: the biggest of the "small slopes" of PH .
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Eisenstein series and congruences (KEY POINT!)
The (Siegel-Hermite) Eisenstein series E2`,n,K (Z ) of weight 2`,
character det−`, is de�ned in [Ike08] by
E2`,n,K (Z ) =

∑
g∈Γn,K ,∞\Γn,K

(det g)`j(g ,Z )−2` (converges for ` > n).

The normalized Eisenstein series is given by
E2`,n,K (Z ) = 2−n

∏n
i=1

L(i − 2`, θi−1) · E2`,n,K (Z ).

If H ∈ Λn(O)+, then the H-th Fourier coe�cient of E(n)
2` (Z ) is

polynomial over Z in variables {p`−(n/2)}p, and equals

|γ(H)|`−(n/2)
∏

p|γ(H)

F̃p(H, p−`+(n/2)), γ(H) = (−DK )[n/2] detH.

Here, F̃p(H,X ) is a certain Laurent polynomial in the variables
{Xp = p−s ,X−1p }p over Z. This polynomial is a key point in
proving congruences for the modular forms in a Rankin-Selberg
integral. Also, for a certain congruence subgroup C = Γc, s ∈ C
and a Hecke ideal character ψ mod c, the series is de�ned

E (Z , s, `, ψ) =
∑

g∈C∞\C

ψ(g)(det g)`j(g ,Z )−2`|(det g)j(g ,Z )|−s .
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An integral representation of Rankin-Selberg type
The integral representation of Rankin-Selberg type in the Hermitian
modular case: is stated for the level c moodular forms:
Theorem 4.1 (Shimura, Klosin), see [Bou16], p.13.
Let 0 6= f ∈M`(Γc, ψ)) of scalar weight `, ψ mod c, such that
∀a, f|T (a) = λ(a)f, and assume that 2` ≥ n, then there exists
T ∈ S+ ∩GLn(K ) and R ∈ GLn(K ) such that

Γ((s))ψ(det(T))Z(s + 3n/2, f, χ) =

Λc(s + 3n/2, θψχ) · C0〈f, θT(χ)E(s̄ + n, `− `θ, χρψ)〉C ′′ ,

where E(Z , s, `− `θ, ψ)C ′′ is a normalized group theoretic (or adelic)
Eisenstein series with components as above of level c′′ divisible by c,
and weight `− `θ. Here 〈·, ·〉C ′′ is the normalized Petersson inner
product associated to the congruence subgroup C ′′ of level c′′.

Γ((s)) = (4π)−n(s+h)Γιn(s + h), Γιn(s) = π
n(n−1)

2

n−1∏
j=0

Γ(s − j),

where h = 0 or 1, C0 the index of a subgroup.
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Proof of the Main Theorem (ii): Kummer congruences
Let us se the notation Dalg

p (m, f, χ) = Ap(s, χ)
D∗(m, f, χ)

Ωf

The integrality of measures is proven representing D
alg
p (m, χ) as

Rankin-Selberg type integral at critical points s = m. Coe�cients
of modular forms in this integral satisfy Kummer-type congruences
and produce bounded measures µD whose construction reduces to
congruences of Kummer type between the Fourier coe�cients of
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representation Dalg
p (sj , f, χj) = Ap(s, χ)
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Ωf
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hj =
∑

T bj ,Tq
T ∈M in a certain �nite-dimensional space M

containing f and de�ned over Q̄. We prove the following
Kummer-type congruences:

∀x ∈ Z∗p,
∑
j

βjχjx
kj ≡ 0 mod pN =⇒

∑
j

βjD
alg
p (sj , f, χ) ≡ 0 mod pN

βj ∈ Q̄, kj = s∗ − sj , where s∗ = `− n in our case.

Computing the Petersson products of a given modular

form f(Z ) =
∑

H aHq
H ∈M∗(Q̄) by another modular form

h(Z ) =
∑

H bHq
H ∈M∗(Q̄) uses a linear form `f : h 7→ 〈f, h〉

〈f, f〉
de�ned over a sub�eld k ⊂ Q̄.
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Admissible Hermitian case
Let f ∈ S`(C , ψ) be a Hecke eigenform for the congruence
subgroup C = Γc of level c. Let q be a prime of K over p, which is
inert over Q. Then we say that f is pre-ordinary at q if there exists
an eigenform 0 6= f0 ∈M{p} ⊂ S`(Cp, ψ) with Satake parameters
tq,i such that ∥∥∥∥∥

(
n∏

i=1

tq,i

)
N(q)−

n(n+1)
2

∥∥∥∥∥
p

= 1,

where ‖‖p the normalized absolute value at p.

The admissible case corresponds to

∥∥∥∥∥∥
∏

q|p

n∏
i=1

tq,i

 p−n(n+1)

∥∥∥∥∥∥
p

= p−h for a positive h > 0.

An interpretation of h as the di�erence h = PN,p(d/2)− PH(d/2)
comes from the above explicit relations.
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Existence of h-admissible measures
of Amice-Vï¾1

2
lu-type gives an unbounded p-adic analytic

interpolation of the L-values of growth loghp(·), using the Mellin
transform of the constructed measures. This condition says that
the product

∏n
i=1

tp,i is nonzero and divisible by a certain power of
p in O:

ordp

∏
q|p

(
n∏

i=1

tq,i

)
p−n(n+1)

 = h.

We use an easy condition of admissibility of a sequence of modular
distributions Φj on X = Z∗p with values in the semigroup algebra
O[[q]] = O[[qH ]]H∈Λ(O)+ as in Theorem 4.8 of [CourPa]. It su�ces
to check congruences of the type (with κ = 4)

Uκv
( j∑
j ′=0

(
j

j ′

)
(−a0p)j−j

′
Φj ′(a + (pv )

)
∈ CpvjO[[q]]

for all j = 0, 1, . . . ,κh − 1. Here s = s∗ − j ′, Φj ′(a + (pv )) a
certain convolution of two Hermitian modular forms, i.e.

Φj ′(χ) = θ(χ) · E(s, χ)

of a Hermitian theta series θ(χ) and an Eisenstein series E(s, χ)
with any Dirichlet character χ mod pr . We use a general su�cient
condition of admissibility of a sequence of modular distributions Φj

on X = Z∗p with values in O[[q]] as in Theorem 4.8 of [CourPa].
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Proof of the Main Theorem (iii): (admissible case)
Using a Rankin-Selberg integral representation for Dalg (s, f, χ) and
an eigenfunction f0 of Atkin's operator U(p) of eigenvalue αf on f0
the Rankin-Selberg integral of Fs,χ := θ(χ) · E(s, χ) gives

Dalg (s, f, χ) =
〈f0, θ(χ) · E(s, χ)〉

〈f, f〉
(the Petersson product on G = GU(ηn))

= α−v
f

〈f0,U(pv )(θ(χ) · E(s, χ))〉
〈f, f〉

= α−v
f

〈f0,U(pv )(Fs,χ)〉
〈f, f〉

.

Modi�cation in the admissible case: instead of Kummer

congruences, to estimate p-adically the integrals of test functions:
M = pv :∫
a+(M)

(x − a)jdDalg :=

j∑
j ′=0

(
j

j ′

)
(−a)j−j

′
∫
a+(M)

x j
′
dDalg , using

the orthogonality of characters and the sequence of zeta
distributions∫
a+(M)

x jdDalg =
1

](O/MO)×

∑
χ mod M

χ−1(a)

∫
X
χ(x)x jdDalg ,∫

X χdD
alg
s∗−j = Dalg (s∗ − j , f , χ) =:

∫
X χ(x)x jdDalg .
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Congruences between the coe�cients of the Hermitian
modular forms

In order to integrate any locally-analytic function on X , it su�ces
to check the following binomial congruences for the coe�cients of
the Hermitian modular form Fs∗−j ,χ =

∑
ξ v(ξ, s∗ − j , χ)qξ : for

v � 0, and a constant C

1
](O/MO)×

j∑
j ′=0

(
j

j ′

)
(−a)j−j

′ ∑
χ mod M

χ−1(a)v(pvξ, s∗ − j ′, χ)qξ

∈ CpvjO[[q]] (This is a quasimodular form if j ′ 6= s∗)

The resulting measure µD allows to integrate all continuous

characters in Yp = Homcont(X ,C∗p), including Hecke characters, as
they are always locally analytic.
Its p-adic Mellin transform LµD is an analytic function on Yp of the
logarithmic growth O(logh), h = ordp(α).
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Proof of the main congruences
Thus the Petersson product in `f can be expressed through the
Fourier coe�cients of h in the case when there is a �nite basis of
the dual space consisting of certain Fourier coe�cients:
`Ti : h 7→ bTi (i = 1, . . . , n). It follows that `f(h) =

∑
i γibTi , where

γi ∈ k .
Using the expression for `f (hj) =

∑
i γi ,jbj ,Ti , the above

congruences reduce to∑
i ,j

γi ,jβjbj ,Ti ≡ 0 mod pN .

The last congruence is done by an elementary check on the Fourier
coe�cients bj ,Ti .
The abstract Kummer congruences are checked for a family of test
elements.
In the admissible case it su�ces to check binomial congruences for
the Fourier coe�cients as above in place of Kummer congruences.
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Appendix A. Rewriting the local factor at p with character θ
Notice that if θ is the quadratic character attached to K/Q then

(1−αpX )(1−αpθ(p)X ) =


(1− αpX )2 if θ(p) = 1, pr = q1q2,N(qi ) = p,

(1− α2pX 2), if θ(p) = −1, pr = q,N(q) = p2,

(1− αpX ) if θ(p) = 0, pr = q2,N(q) = p.

Thus, if X = p−s , X 2 = p−2s , N(q) = p, Zq(X )−1

=


∏

2n
i=1

(1− N(q1)2nt−1q1q2,i
X )(1− N(q2)−1tq1q2,iX ), if θ(p) = 1,∏n

i=1
(1− N(q)n−1tq,iX

2)(1− N(q)nt−1q,i X
2), if θ(p) = −1,∏n

i=1
(1− N(q)n−1tq,iX )(1− N(q)nt−1q,i X ), if θ(p) = 0.

=


∏n

i=1
(1− γp,iX )2

∏n
i=1

(1− δp,iX )2 if θ(p) = 1, i.e. pr = q1q2,∏n
i=1

(1− α2p,iX 2)
∏n

i=1
(1− β2p,iX 2), if θ(p) = −1, i.e. pr = q,∏n

i=1
(1− α′p,iX )

∏n
i=1

(1− β′p,iX ) if θ(p) = 0, i.e. pr = q2,

where α′p,i = pn−1tq,i , β′p,ip
nt−1q,i , γp,i = p2nt−1q1q2,i

, p−1tq1q2,i . It

follows that
∏

q|p Zq(N(q)−n−(1/2)X ) = X 4n + · · ·
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Appendix A (continued).Relations between αi(p) and ti ,q
were studied and explained by M.Harris [Ha97] for general
Hermitian zeta functions Z(s, f) of type introduced in [Shi00],
using reprsentation theory of unitary groups and Deligne's approach
to L-functions, see [De79], in terms of a n-dimensional Galois
representations ρλ : Gal(K̄/K ) −→ GL(Mf,λ) ∼= GLn(Eλ) over a
completion Eλ of a number �eld E containing K and the Hecke
eigenvalues of a vector-valued Hermitian modular form f:

Z(s − n′ − 1
2
, f) = D(s, f) = L(s,Mf,λ �M(ψ))

for an algebraic Hecke ideal character ψ as above of the in�nity
type mψ, see [GH16], p.20. Here the symbol L(s,Mf,λ �M(ψ))
denotes the Rankin-Selberg type convolution (it corresponds to
tensor product of Galois representations). Notice that L(s,Mf,λ) is
of degree 2n, and L(s,Mf,λ �M(ψ)) is of degree 4n because
L(s, ψ) = L(s,R(ψ)) is of degree 2.
Moreover, M.Harris suggested a general description of D(s) with
given Gamma factors and analytic properties as some D(s, f) some
under natural conditions on Gamma factors, giving higher versions
of Shimura-Taniyama-Weil conjecture (i.e. higher Wiles' modularity
theorem). This can be stated also over a totally real �eld F
(instead of Q), and its quadratic totally imaginary extension K , see
[GH16], [Pa94].
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Appendix B. Shimura's Theorem: algebraicity of critical
values in Cases Sp and UT, p.234 of [Shi00]

Let f ∈ V(Q̄) be a non zero arithmetical automorphic form of type
Sp or UT. Let χ be a Hecke character of K such that
χa(x) = x`a|xa|−` with ` ∈ Za, and let σ0 ∈ 2−1Z. Assume, in the
notations of Chapter 7 of [Shi00] on the weights kv , µv , `v , that

Case Sp 2n + 1− kv + µv ≤ 2σ0 ≤ kv − µv ,
where µv = 0 if [kv ]− lv ∈ 2Z
and µv = 1 if [kv ]− lv 6∈ 2Z; σ0 − kv + µv

for every v ∈ a if σ0 > n and

σ0 − 1− kv + µv ∈ 2Z for every v ∈ a if σ0 ≤ n.

Case UT 4n − (2kvρ + `v ) ≤ 2σ0 ≤ mv − |kv − kvρ − `v |
and 2σ0 − `v ∈ 2Z for every v ∈ a.
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Appendix B. Shimura's Theorem (continued)
Further exclude the following cases

(A) Case Sp σ0 = n + 1,F = Q and χ2 = 1;

(B) Case Sp σ0 = n + (3/2),F = Q;χ2 = 1 and [k]− ` ∈ 2Z
(C) Case Sp σ0 = 0, c = g and χ = 1;

(D) Case Sp 0 < σ0 ≤ n, c = g, χ2 = 1 and the conductor of χ is g;

(E) Case UT 2σ0 = 2n + 1,F = Q, χ1 = θ, and kv − kvρ = `v ;

(F) Case UT 0 ≤ 2σ0 < 2n, c = g, χ1 = θ2σ0 and the conductor of χ is r

Then
Z(σ0, f, χ)/〈f, f〉 ∈ πn|m|+dεQ̄,

where d = [F : Q], |m| =
∑

v∈amv , and

ε =


(n + 1)σ0 − n2 − n, Case Sp, k ∈ Za, and σ0 > n0),

nσ0 − n2, Case Sp, k 6∈ Za, orσ0 ≤ n0),

2nσ0 − 2n2 + n Case UT

Notice that πn|m|+dε ∈ Z in all cases; if k 6∈ Za, the above parity
condition on σ0 shows that σ0 + kv ∈ Z, so that n|m|+ dε ∈ Z.54



Appendix C. Examples of Hermitian cusp forms
The Hermitian Ikeda lift, [Ike08]. Assume n = 2n′ even.

Let f (τ) =
∞∑

N=1

a(N)qN ∈ S2k+1(Γ0(DK ), χ) be a primitive form,

whose L-function is given by

L(f , s) =
∏
p 6 |DK

(1− a(p)p−s + θ(p)p2k−2s)−1
∏
p|DK

(1− a(p)p−s)−1.

For each prime p 6 | DK , de�ne the Satake parameter
{αp, βp} = {αp, θ(p)α−1p } by

(1− a(p)X + θ(p)p2kX 2) = (1− pkαpX )(1− pkβpX )

For p|DK , we put αp = p−ka(p). Put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H;αp),H ∈ Λn(O)+

f(Z ) =
∑

H∈Λn(O)+

A(H)qH ,Z ∈ H2n.
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Appendix C (continued).The �rst theorem (even case)
Theorem 5.1 (Case E) of [Ike08] Assume that n = 2n′ is
even. Let f (τ), A(H) and f(Z ) be as above. Then we have
f ∈ S2k+2n′(Γ

(n)
K , det−k−n

′
).

In the case when n is odd, consider a similar lifting for a normalized

Hecke eigenform n = 2n′ + 1 is odd. Let f (τ) =
∞∑

N=1

a(N)qN

∈ S2k(SL2(Z)) be a primitive form, whose L-function is given by

L(f , s) =
∏
p

(1− a(p)p−s + p2k−1−2s)−1.

For each prime p, de�ne the Satake parameter {αp, α
−1
p } by

(1− a(p)X + p2k−1X 2) = (1− pk−(1/2)αpX )(1− pk−(1/2)α−1X ).

Put

A(H) = |γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H;αp),H ∈ Λn(O)+

f(Z ) =
∑

H∈Λn(O)+

A(H)qH ,Z ∈ Hn.
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Appendix C (continued). The second theorem (odd case)
Theorem 5.2 (Case O) of [Ike08]. Assume that n = 2n′ + 1
is odd. Let f (τ), A(H) and f(Z ) be as above. Then we have
f ∈ S2k+2n′(Γ

(n)
K , det−k−n

′
).

The lift Lift(n)(f ) of f is a common Hecke eigenform of all Hecke
operators of the unitary group, if it is not identically zero (Theorem
13.6).

Theorem 18.1 of [Ike08]. Let n, n′, and f be as in Theorem
5.1 or as in Theorem 5.2. Assume that Lift(n)(f ) 6= 0. Let
L(s, Lift(n)(f ), st) be the L-function of Lift(n)(f) associated to
st : LG→ GL4n(C). Then up to bad Euler factors,
L(s, Lift(n)(f ), st) is equal to

n∏
i=1

L(s + k + n′ − i +
1
2
, f )L(s + k + n′ − i +

1
2
, f , θ).

Moreover, the 4n charcteristic roots of L(s, Lift(n)(f ), st) given as
follows: for i = 1, · · · , n

αpp
−k−n′+i− 1

2 , α−1p p−k−n
′+i− 1

2 , θ(p)αpp
−k−n′+i− 1

2 , θ(p)α−1p p−k−n
′+i− 1

2
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Functional equation of the lift (thanks to Sho Takemori!)
There are two cases [Ike08]: the even case (E) and the odd case

(O):


f ∈ S2k+1(Γ0(D), θ), f = Lift(n)(f ) ∈ S2k+2n′(ΓK ,n) (E )

(of even degree n = 2n′ and of weight 2k + 2n′)

f ∈ S2k(SL(Z)), f = Lift(n)(f ) ∈ S2k+2n′(ΓK ,n) (O)

(of odd degree n = 2n′ + 1 and of weight 2k + 2n′).
Then, up to bad Euler factors, the standard L-function of
f = Lift(n)(f ) is given by Z(s, f)=∏n

i=1
L(s + k + n′ − i + 1

2
, f )L(s + k + n′ − i + 1

2
, f , θ)

Let us denote t(s, i) = s + k + n′ − i + 1

2
then

=



∏
2n′

i=1
L(s + k + n′ − i + 1

2
, f )L(s + k + n′ − i + 1

2
, f , θ) (E )∏n′

i=1
L(t(s, i), f )L(t(s, n + 1− i), f )

L(t(s, i), f , θ)L(t(s, n + 1− i), f , θ)∏
2n′+1

i=1
L(s + k + n′ − i + 1

2
, f )

×L(s + k + n′ − i + 1

2
, f , θ) (O)

= L(s + k − 1

2
, f )L(s + k − 1

2
, f , θ)∏n′

i=1
L(t(s, i), f )L(t(s, n + 1− i), f )

L(t(s, i), f , θ)L(t(s, n + 1− i), f , θ).
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The Gamma factor ΓZ(s) of Ikeda's lift
In the even case t(1− s, n + 1− i) = t(1− s, 2n′ + 1− i)
=(2k + 1)− t(s, i). The Hecke functional equation s 7→ 2k + 1− s
in all symmetric terms of the product, gives the functional equation
of the standard L-function of the form s 7→ 1− s, and the gamma
factor is then

n∏
i=1

ΓC(s + k + n′ − i + 1/2)2 = ΓD(s + n′ +
1
2

).

In the odd case n = 2n′ + 1 when f ∈ S2k(SL2(Z)), the
Lift(f ) ∈ S2k+2n′(ΓK ,n). By 2k − t(s, i) = t(1− s, n + 1− i), the
standard L functions has functional equation of the form s 7→ 1− s
and the gamma factor is the same.
Hence the Gamma factor of Ikeda's lifting, denoted by f, of an
elliptic modular form f and used as a pattern, extends to a general
(not necessarily lifted) Hermitian modular form f of even weight `,
which equals in the lifted case to ` = 2k + 2n′, where
k = (`− 2n′)/2 = `/2− n′=`/2− n′, when the Gamma factor of
the standard zeta function with the symmetry s 7→ 1− s becomes
(see p.58)

∏n
i=1

ΓC(s + `/2− n′ + n′ − i + (1/2))2 =∏n
i=1

ΓC(s + `/2− i + (1/2))2 =
∏n−1

i=0
ΓC(s + `/2− i − (1/2))2.

59



Thanks for your attention!
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