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Partially observed Markov models

Definition (Partially observed Markov model (POMM))

A partially observed Markov model with latent space (X, X’) and
observation space (Y,)) is a pairwise homogeneous Markov chain
((Yn, X 1), Fn)nzo with kernel K, 0 € ©, generally described as

Y il Fret, Xk~ GO k1, Vi1, ki)

) (1)
K1 Fe ~ Q' (Xw, Vi +)

and such that only the { Y }'s are observed .

4/30



Two important examples

***** > Xk—>Xk‘+1****> ””’>Xl<—Q>Xk‘+1””>
o | s
Yk Yi+1 Yk Yk/—&-l
Hidden Markov models (HMM) |  Obs.-Driv. models (ODM)

> In both cases, { Xk} is a Markov chain.
> An ODM moreover requires that

0 :
Q (X, Vi) = %gk(xk) )
where d, denotes the Dirac mass at point x and, forall y €Y,

P’ Y x X = X
(v, ) = Py(x) -
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General-order ODM

For m < n, denote Zpn.pp := (Zmy Zmt1, - - -, Zn)-

6/30



General-order ODM

For m < n, denote Zpn.pp := (Zmy Zmt1, - - -, Zn)-

Definition (ODM(p, q))

Let p,g > 1 and, for all 0 € ©,

P! YPx XTI = X
(v, %) = 9y (%) .

An ODM of order (p, q) with link function " and observation
kernel G satisfies, for all k € N,

9
K1 = wy(—p+1+k):k (X(—Q+1+k)ik) ’
Yier1]|Fiy X1~ G (015

where Fie = o (Yo pit. oo Vi, X0 X)),
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Linear ODM

Definition (Linear ODM (LODM))

A linear ODM (LODM) is an ODM
> with parameters ¢ = (1, ) with 0 = (w, 21.p, b1.q) € RYFPH,
> with X C R and link functions of the form

P YP x X9 = X

(}/I:p; Xl:q) = ’d};}(x) =w+ Z akU(Yk) + Z kak ) (3)

k=1 k=1

where v : Y — R.
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Definition (Linear ODM (LODM))

A linear ODM (LODM) is an ODM
> with parameters ¢ = (1, ) with 0 = (w, 21.p, b1.q) € RYFPH,
> with X C R and link functions of the form

P YP x X9 = X

P q
(Vip 1) = () = w+ Y akv(ve) + D bk, (3)
k=1 P

where v : Y — R.

If X =Ry, set (w,a1p, b1:q) € REP T and v : Y — Ry
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Examples of LODM

> GARCH(p, q), Bollerslev [1986]:
X=Ry, G'(x;)=N(0,%) and v(y)=y>.
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Examples of LODM

> GARCH(p, q), Bollerslev [1986]:
X=Ry, G'(x;)=N(0,%) and wv(y)=y2.

> In-GARCH, Davis, Dunsmuir, and Streett [2003]:
X=R;, G'(x;)=Poi(x) and v(y)=y.

> NBINGARCH(p, q), Zhu [2011]:

_ Ooe ) — 1 _
X—R+,G(x,)—NB(r,1+X) and o(y)=y.

> Log-In-GARCH, Fokianos and Tjgstheim [2011]:
X =R, G'(x;-) = Poi(exp~) and v(y)=In(1+y).

Note that, transforming the observations, we can take v(y) =y,

but it modifies the definition of G'.
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Domination

> In contrast to HMMs, ODMs are not fully dominated:
K%(x,-) is not dominated by (1 ® v) for o-finite measures
and v on X and Y, resp.

> We always assume that the ODM is partially dominated:
there is a o-finite measure v on Y such that, for all 6 € © and
x € X, GY(x,-) is dominated by v, and, moreover, the density
g?(;) = dGY(x,-)/dv satisfies, for all y €Y,

g'(y) >0,

> To avoid a trivial case, v is supposed to be non-degenerate,
that is, its support contains at least two points.

> For LODMs, we assume the push measure v o v™! to be
non-degenerate.
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Embedding in an ODM(1,1)

Define Z = YP~! x X9 and for all k € N,
k= (Y (k—pt1):(k-1)» X (k—q+1):k) €Z -
> Then (Yk, Zk)is0 is an ODM(1,1) with link function

v YxZ—>2Z
(v,2) — Wﬁ(z) = w(ew)(x) where 7 = (y,x).

> Given an initial distribution 77 on Z, we denote by IP’,@7 the
distribution of { X4, k > —q, Y, £ > —p} when

(Y (=pr1):—15 X (—gt1)0) ~ 17 -
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Likelihood

> For any m € N and yq.,,_1 € Y™, define

VW iyom 1) =W’ o-..ow§0 227, (4)

Ym—1

O Vom-1) = Mprg-10V (yom1) 1 Z—=X,  (5)

where 1; : Z — Y or X denotes the projection over the j-th
coordinate.
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> For any m € N and yq.,,_1 € Y™, define

Y Youmor) = V), 00 W 22, (4

Ym—1
O Vom-1) = Mprg-10V (yom1) 1 Z—=X,  (5)

where 1; : Z — Y or X denotes the projection over the j-th
coordinate.

> Then, for any arbitrary z() € Z and observations Yo:n, the
(conditional) log-likelihood (given 7o = z()) reads

Lo = Z'“g (W Y osk-1))(20); Yk) : (6)

> Hence the log-likelihood, as well as its derivatives, can easily
be computed using O(n) operations.

11/30



Stationary distribution

> The existence and uniqueness of stationary solutions for the
standard GARCH(p, q) equation can be treated in the
framework of stochastic linear equation, see Bougerol and
Picard [1992].

12/30



Stationary distribution

> The existence and uniqueness of stationary solutions for the
standard GARCH(p, q) equation can be treated in the

framework of stochastic linear equation, see Bougerol and
Picard [1992].

> For general ODM’s, the ergodicity of the Markov chain
(Yk, Zk) is equivalent to that of the Markov chain (/).

12/30



Stationary distribution

> The existence and uniqueness of stationary solutions for the
standard GARCH(p, q) equation can be treated in the

framework of stochastic linear equation, see Bougerol and
Picard [1992].

> For general ODM’s, the ergodicity of the Markov chain
(Yk, Zk) is equivalent to that of the Markov chain (/).

> Integer valued ODM's are not ¢-irreducible and require
particular attention.

12/30



Stationary distribution

> The existence and uniqueness of stationary solutions for the
standard GARCH(p, q) equation can be treated in the
framework of stochastic linear equation, see Bougerol and
Picard [1992].

> For general ODM’s, the ergodicity of the Markov chain
(Yk, Zk) is equivalent to that of the Markov chain (/).

> Integer valued ODM's are not ¢-irreducible and require
particular attention.

Existence: Weak Feller 4+ geometric Drift condition, see
Tweedie [1988].

Uniqueness: coupling argument based on technical
assumptions on G”, see Douc, Doukhan, and Moulines
[2013].

12/30



Stationary distribution

> The existence and uniqueness of stationary solutions for the
standard GARCH(p, q) equation can be treated in the
framework of stochastic linear equation, see Bougerol and
Picard [1992].

> For general ODM’s, the ergodicity of the Markov chain
(Yk, Zk) is equivalent to that of the Markov chain (/).

> Integer valued ODM's are not ¢-irreducible and require
particular attention.

Existence: Weak Feller 4+ geometric Drift condition, see
Tweedie [1988].
Uniqueness: coupling argument based on technical
assumptions on G”, see Douc, Doukhan, and Moulines
[2013].
> A similar coupling argument yields 3 mixing properties for
(Yk), see Doukhan and Neumann [2017].
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Recall that, for all § € © and initial distribution 7 on (Z, Z), IP’;"7
denotes the distribution of { Yk, X, : k > —p, ¢ > —q} for
Zo ~m.
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Recall that, for all § € © and initial distribution 7 on (Z, Z), Pg
denotes the distribution of { Yk, X, : k > —p, ¢ > —q} for
Zo ~m.

If the model is ergodic, i.e. there exists a unique probability
measure 7 such that IPZ is shift-invariant, we denote

> the stationary distribution extended on
((Y x X)Z, (X @ Y)®Z) by P?,

> the marginalization of P? on (YZ,y®Z) by pe

Remark : when establishing ergodicity through a drift condition,
we obtain some minimal finite moment condition, referred to as
(M) in the following, for (o (and YY) under the stationary
distribution.

13/30



Statistical inference
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Statistical inference

> The Maximum Likelihood Estimator (MLE) é\z(i)’n is defined as

o~

0,6 , € argmax {Lzo) . 0€ @} (7)

for some arbitrary initial point z() € Z.

> In well-specified models, a standard consistency result consists
in showing that

~

lim 0,0=0,, P"-as. 6)

n—o0

> and asymptotic normality consists in showing that

~ 0%
V(00,0 — 0) = N(0,.771(04) (9)
where J(04) is a nonsingular d x d-matrix.
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Asymptotic behavior of the likelihood

To fulfill this program, an essential ingredient is to study the
asymptotic behavior of the likelihood (6).
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To fulfill this program, an essential ingredient is to study the
asymptotic behavior of the likelihood (6).

In particular, we need a stationary approximation of

¢9<Y0:(k—1)>(z(i)) ) k>0.

This is done by approximating Yo.(x—1) by ¥ .(k—1), defined, in
the case k = 1 by the backward limit

lim 9?(Y;0)(z0) .

Jj——o00

Let (X,0x) and (Z,97) be complete metric spaces in such a way
that Mpiq41: Z — Xis 1-Lipschitz.
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Uniform Lipschitz condition

By (4) and (5), dx (¢9(Y 1.0)(z0), (Y 111.0)(z?)) is bounded
from above by

( 37 (V0 {n)(2), V' (1)(-"))

su
er"E,z' 52 (Z’ Z,)

> o7 (WY i11)(20), 20) .

where we used a uniform Lipschitz constant of the /- iterate of the
link function.
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Uniform Lipschitz condition

By (4) and (5), dx (¢9(Y 1.0)(z0), (Y 111.0)(z?)) is bounded
from above by

( o 57 (W () (2), W {y)(-")

yGY",z,z’ 52 (Z’ Z,)

> o7 (WY i11)(20), 20) .

where we used a uniform Lipschitz constant of the /- iterate of the
link function.

Define for all / € N*,

Lt — s {az (), ') ()

. i /
52(2’2/) cyeY iz, 2z EZ} .

We use the following condition:

(A-1) For all € ©, we have Lipj < co and Lip? — 0 as n — oo,
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Asymptotic behavior of the likelihood (cont.)

Under (A-1)+ (M), for all @ € ©, there exists a measurable
function 1% (-) : Y2~ — X such that for all 4,0, € ©,

X1 =YY s0)  Pl-as.
WY o) = fim (Y no)(20)  Freas.

Note that, under P’+, we have that
>y pl(y | Y ae0) i= g7 (we(Y,oo:O);y) is a density w.r.t. v
>y p(y | Y_oo0) is the conditional density of Yy given
y—oo:O-

Moreover, with some continuity conditions, for n large,

Lo nm > e (Vi | Y sphery)  B-as. (10)
k=0
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Asymptotic behavior of the likelihood (cont.)

Under (A-1)+ (M), for all @ € ©, there exists a measurable
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-
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The steps to the CLT for the MLE

Using ergodicity +(M) :

> Approximate the likelihood as above;
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The steps to the CLT for the MLE

Using ergodicity +(M) :

> Approximate the likelihood as above;

> Prove consistency: lim 0,u , = 0y, P’-as.,
n—o0 ’

> Taylor expansion of the score function

n
S"(e) = 280 In pe(Yk ’ Y—oo:(k—l))
k=0
around 0,;

> CLT for the martingale S,(¢,) (under P%+),

> A.s. convergence for the Hessian.
All theses steps can be carried out for the previously mentioned
models, with some restrictions on the parameter set ©, sometimes
appearing in technical conditions.
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Back to consistency
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Consistency: missing steps

From the approximation in (10), we only get that
. n o *\ _ 0% _
lim A (920)7”,@ ) —0  Peoas., (11)
where A is the metric on © and the limit maximizing set ©* is
defined for all 0, by

©* — argmax {IE”* Inp’(Yi | Yooeo)] : 0 € e}

To prove consistency, it remains to go through
two additional steps :
> we need to show that (see Douc, Roueff, and Sim [2016] for
any POMM)

O =[0,] == {eee : IF»‘):P”*} .

Then, with (11), we get equivalence class consistency (as
introduced by Leroux [1992]).

> To conclude, find conditions to have that [0,] = {/,}. (So
that the model restricted to these 0,s is identifiable). 21 /30



Identifiability: basic assumption on the observation kernel

We suppose that the observation kernel satisfies:

(A-2) We can write 0, = (U, p«) and, for all 6 = (9, ¢) in © and
x,x" € X,

G(x;-) = G (x;-) ifandonlyif o=y, and x=x".

(i.e. ¢ is the part of the parameter 6§ that can be identified directly
from the conditional distribution of one observation)
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Identifiability: basic assumption on the observation kernel

We suppose that the observation kernel satisfies:

(A-3) We can write 0, = (4, ¢x) and, for all 6 = (0, ¢) in © and
x,x" € X,

G(x;-) = G (x;-) ifandonlyif o=y, and x=x".

(i.e. ¢ is the part of the parameter 6§ that can be identified directly
from the conditional distribution of one observation)

Denote by [0,] the equivalence class:

pl={reco: B =F"]
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|dentifiability: a general result

We have the following result.

Theorem

Consider an ergodic ODM(p, q) satisfying (A-2). Suppose that, for
all § € ©, there exists 1/ (-) : Y2~ — X such that

X1 =YY o) Pl-as. (12)
Then [0,] coincides with the set of all & = (¥, o) € © such that
Y{Y —o00) = ¥ (¥ —ocr0) Preas.
U o) = e (0 ) ) P
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We have the following result.

Theorem

Consider an ergodic ODM(p, q) satisfying (A-2). Suppose that, for
all § € ©, there exists 1/ (-) : Y2~ — X such that

X1 =YY o) Pl-as. (12)
Then [0,] coincides with the set of all & = (¥, o) € © such that
Y{Y —o00) = ¥ (¥ —ocr0) Preas.
U o) = e (0 ) ) P

Recall that (12) follows from (A-1)+(M), see * likelihood approx.
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Uniform Lipschitz assumption: the linear case.

For a linear link function (3) with v(y) =y,
Ass. (A-1) is equivalent to

(L-1) For all 6 = (¥, ¢) € © with ¥ = (w, a1.p, b1.q), we have
bl;q S é;q,

where

q
Sq = {Cl:q €RI : Vze C,|z| <1implies 1 — chzk #+ O} )
k=1
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|dentifiability: the linear case.

We have the following result.

Consider an ergodic ODM(p, q) satisfying (L-1) and (A-2)+(M).
Then, for any 0, = (w*, a*1.p, b*1:q, ©*) in the interior of ©,

[04] = {0x} if and only if

(L-2) The polynomials Pp(-; 2*1:p) and Qq(+; b*1.q) have no
common complex roots,

where we defined
p—1
. —1—k
Pp(z;a1.p) = Z ags1 zP
k=0

q
Qq(z; b1.q) = 29 — Z bkzq_k .
k=1
25/30
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forthcoming paper.
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Concluding remarks

> Details can be found in the thesis of Sim [2016] and in a
forthcoming paper.

> The steps leading to consistency and asymptotic normality are
standard for all POMMs, some of which can be treated in a
very general fashion.

> The initial step is in fact to prove ergodicity of the complete
Markov chain, and define © accordingly (the integer valued
case being of special interest).

> The same identifiability condition is valid in the general case
of LODMs.

> Open question : GARCH(p, q) processes are known to be
regularly varying. How can this be extended to integer valued
cases ?
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