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Introduction

Implementing Mathematics with The
Implementing Nuprl Proof Development System

Mathematics

with By the PRL Group:

the Nuprl

Developeit R. L. Constable, S. F. Allen,

System

H. M. Bromley, W. R. Cleaveland,

J. F Cremer, R. W. Harper, D. J. Howe,
T. B. Knoblock, N. P. Mendler,

P. Panangaden, J. T Sasaki, S. F. Smith

@ Inspired by the work of Errett Bishop and with NSF funding
to implement proofs-as-programs, Bob Constable and his
group at Cornell developed Nuprl, a proof assistant now based
on extensional, constructive type theory.

@ We have formalized all of Chapter 2 of Bishop and Bridges,
Constructive Analysis in Nuprl.

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist


http://www.nuprl.org/MathLibrary/ConstructiveAnalysis/

Brouwerian Nuprl

@ From studying Kleene we became convinced that both bar
induction and the continuity principle should be true in Nuprl
and that they would be very useful for formalizing
constructive analysis.

@ In the last few years we have formalized the semantics of
Nuprl in Coq. This allowed us to extend Nuprl in new ways
and formally confirm our conviction.

o We added named exceptions and a “fresh” name binding
operation, and proved rules for reasoning about them. These
allow us to prove a strong continuity principle for Nuprl.

e We added a version of free choice sequences to the Nuprl
semantics. This allows us to justify a strong bar induction rule,
and use that rule to prove a general form of bar recursion.

@ Using these new features we prove Brouwer's theorem that all
real functions on a proper, compact interval are continuous.
This allows us to simplify several aspects of our formalization
of Constructive Analysis.
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Nuprl in a nutshell

Nuprl built its own programming logic and later evolved towards
the work of Per Martin-Lof. The basic concept is x =y € T where
x and y are terms and T is a type.

Computation comes first: the terms are definitional extensions of a
primitive, untyped programming language that includes

@ numbers and tokens: ..., —1,0,1,2..., ‘abc’, ...
Ax.t, (t1,t2), inl t, inr t, +, %, —, div, rem
t1(t2), spread(tyi; a, b.tp), decide(ty; a.t; b.t3), fix F

@ exceptions, try?catch, vx.t, and several more

We then define t; — t» (computes to) and t; ~ t, (computational
bi-simulation).

A type T "is" a partial equivalence relation Rt on terms that
respects the bi-simulation relation. Then x € T if (x Rt x) and
x=yeTif(x Rry).

Every type is a member of a universe U; where i € 0,1,2, ...
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Nuprl is an extensional type theory

@ Nuprl is extensional: if x =y € Aand A= B € U; then
x=ye€eB.

o Nuprl has many types: quotients x,y.T//E(x,y), intersection
Ny.a B(x), “partial” types T where fix (Ax.x) =Le T ...

@ The same term can be proved to have many different types.

@ Type membership is undecidable, so there is no type-checking
algorithm.

@ Function extensionality:
f=gex:A— B(x) e Vx: A f(x)=g(x) € B(x)

@ Nuprl is expressive enough to formalize category theory and

(the semantics of) homotopy type theory — viz. Cubical type
theory.
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Squashing

@ The "set” type {x: T | P(x)} is the subtype of x € T for
which P(x) is true.

o A member x of {x: T | P(x)} does not “come with" a proof
of P(x).

o This type is useful mainly when P(x) is “squash stable” — we
can construct a witness for P(x) from x when we know only
that P(x) is true (i.e inhabited).

e This allows us to omit unneeded evidence.

e | T, the “squash” of type T is {x: Unit | T}

e | T is inhabited if and only if T is inhabited, but it contains no

other information (about what terms inhabit T).
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Truncation

e | T, the “truncation” of T is the quotient type T//true

e The inhabitants of | T are the same as the inhabitants of T,
but they are all equal.

e | T can express the existence of something of type T that is
not extensional w.r.t. its parameters.
@ The choice principle for type T is
VP:T —P. (Vx:T. | P[x]) | (Vx:T. P[x])
@ In Nuprl we can prove

e The choice principle is true for N and for N — N
o The choice principle is false for (N — N) =+ N
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How does Nuprl prove Brouwer's theorem?

o It satisfies both weak and strong forms of the continuity
principle for numbers.
o let B=N—>NandN,={0,1,...n—1}
o If F € B— N then
weak Vf:B.13n:N.Vg:B. F(g) = F(f)if (f =g € N, = N)
strong |IM : n:N — (N, = N) — (N |J Unit). Vf:B. ({3n:
N. M(n,f) = F(f)) A (Yn:N. M(n, f) = F(f) if M(n,f) € N)
@ Nuprl has two (and only two) induction principles
e Induction on N
e Bar Induction

@ Using Bar Induction we prove FAN, and from FAN and the
strong continuity principle we prove Brouwer's theorem that
all functions from [0, 1] — R are uniformly continuous.
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The constructive real numbers

R = {r:Nt > 7Z|
Vn,m:N. |[nxr(m)—mxr(n)| <2(n+m) }

r(n) r(m),gl_’_l

then ]

2n 2m n m
SO )\n.réz) is Bishop's regular
(r=s) = Vn.|r(n)—s(n) <4
(r<s) = 3n.r(n)+4<s(n)
(r#s) = (r<s)V(s<r)
Fun(f,l) = Vx,y:{r:R|rell.(x=y)=(f(x)="f(y))
SFun(f,l) = Vx,y:{r:R|rel}l.(f(x)#f(y)) = (x#y)

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist



Brouwer’s theorem

Cont(f,lI) = Ve>0.30>0.VYx,y:{r:R|rel}.
x =yl <d=[f(x) = fly)| <e

Theorem 1: Va, b:R. (a < b) = (Cont(f,[a, b]) < Fun(f,]a, b]))
Theorem 2: Va, b:R. (a < b) = (Cont(f, [a, b]) & SFun(f,]a, b]))
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Bar Induction Rule

H + Te Type (1)

H, n:N, s: (N, - T) F B(n,s)V-B(ns) (2)

H, a:(N— T) + [3n:N. B(n,a) (3)

H, n:N,s:(N, — T),x:B(n,s) + f(n,s)e X(n,s) (4)

H, n:N,s:(N, = T),x:P + f(n,s)e X(n,s) (5)
P=vt:T.f(n+1,s.t) € X(n+1,s.t)

st=Xm.if m=n then t else s(m)  (6)
H + f(0,c) € X(0,c) (7)
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The continuity principle is constructive

@ For F € B — N, e € Unit the constructive content of strong
continuity is an Mg € n: N — (N, — N) — (N | Unit)

o Mg = An,f. ve.(F(f)?e : o) where f(x) = if x < 0 then L
else if x < n then f(x) else exception(e; o)

@ Kreisel and others (e.g. Escardo and Xu) have shown that no
such M can be extensional. This means that extensionally
equal F = G € B — N can have Mg(n, f) # Mg(n, f).

@ We can (and must) truncate the strong continuity proposition.

@ The truncated version is still strong enough for many
purposes, in particular, Brouwer's theorem.
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How do we know that Nuprl is consistent?

@ Doug Howe defined the t; ~ t; (computational bi-simulation)
relation and proved its crucial properties.

@ Stuart Allen gave an "inductive-recursive” definition of the
partial equivalence relation semantics for the types in a Nuprl
universe. He then converted this into a recursive definition.
Using this semantics he defined the truth of a Nuprl sequent
H = C ext t.

@ Vincent Rahli and Abhishek Anand have formalized all of this
in Coq and proved (most of) the rules of Nuprl (work still
ongoing).

@ Bar Induction is powerful enough to prove that the predicative
part of Coq is consistent. Therefore its soundness proof needs
some more powerful principle. We used PV =P in the
impredicative Prop universe. We believe bar induction for
other reasons due to Brouwer and Kleene.
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