Formalized Brouwerian Real Analysis using the

Nuprl proof assistant

Mark Bickford

Cornell University, Computer Science

November 11, 2016

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

Introduction

Implementing Mathematics with The
Implementing Nuprl Proof Development System

Mathematics

with By the PRL Group:

the Nuprl

Developeit R. L. Constable, S. F. Allen,

System

H. M. Bromley, W. R. Cleaveland,

J. F Cremer, R. W. Harper, D. J. Howe,
T. B. Knoblock, N. P. Mendler,

P. Panangaden, J. T Sasaki, S. F. Smith

@ Inspired by the work of Errett Bishop and with NSF funding
to implement proofs-as-programs, Bob Constable and his
group at Cornell developed Nuprl, a proof assistant now based
on extensional, constructive type theory.

@ We have formalized all of Chapter 2 of Bishop and Bridges,
Constructive Analysis in Nuprl.

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

http://www.nuprl.org/MathLibrary/ConstructiveAnalysis/

Brouwerian Nuprl

@ From studying Kleene we became convinced that both bar
induction and the continuity principle should be true in Nuprl
and that they would be very useful for formalizing
constructive analysis.

@ In the last few years we have formalized the semantics of
Nuprl in Coq. This allowed us to extend Nuprl in new ways
and formally confirm our conviction.

o We added named exceptions and a “fresh” name binding
operation, and proved rules for reasoning about them. These
allow us to prove a strong continuity principle for Nuprl.

e We added a version of free choice sequences to the Nuprl
semantics. This allows us to justify a strong bar induction rule,
and use that rule to prove a general form of bar recursion.

@ Using these new features we prove Brouwer's theorem that all
real functions on a proper, compact interval are continuous.
This allows us to simplify several aspects of our formalization
of Constructive Analysis.

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

Nuprl in a nutshell

Nuprl built its own programming logic and later evolved towards
the work of Per Martin-Lof. The basic concept is x =y € T where
x and y are terms and T is a type.

Computation comes first: the terms are definitional extensions of a
primitive, untyped programming language that includes

@ numbers and tokens: ..., —1,0,1,2..., ‘abc’, ...
Ax.t, (t1,t2), inl t, inr t, +, %, —, div, rem
t1(t2), spread(tyi; a, b.tp), decide(ty; a.t; b.t3), fix F

@ exceptions, try?catch, vx.t, and several more

We then define t; — t» (computes to) and t; ~ t, (computational
bi-simulation).

A type T "is" a partial equivalence relation Rt on terms that
respects the bi-simulation relation. Then x € T if (x Rt x) and
x=yeTif(x Rry).

Every type is a member of a universe U; where i € 0,1,2, ...

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

Nuprl is an extensional type theory

@ Nuprl is extensional: if x =y € Aand A= B € U; then
x=ye€eB.

o Nuprl has many types: quotients x,y.T//E(x,y), intersection
Ny.a B(x), “partial” types T where fix (Ax.x) =Le T ...

@ The same term can be proved to have many different types.

@ Type membership is undecidable, so there is no type-checking
algorithm.

@ Function extensionality:
f=gex:A— B(x) e Vx: A f(x)=g(x) € B(x)

@ Nuprl is expressive enough to formalize category theory and

(the semantics of) homotopy type theory — viz. Cubical type
theory.

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

Squashing

@ The "set” type {x: T | P(x)} is the subtype of x € T for
which P(x) is true.

o A member x of {x: T | P(x)} does not “come with" a proof
of P(x).

o This type is useful mainly when P(x) is “squash stable” — we
can construct a witness for P(x) from x when we know only
that P(x) is true (i.e inhabited).

e This allows us to omit unneeded evidence.

e | T, the “squash” of type T is {x: Unit | T}

e | T is inhabited if and only if T is inhabited, but it contains no

other information (about what terms inhabit T).

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

Truncation

e | T, the “truncation” of T is the quotient type T//true

e The inhabitants of | T are the same as the inhabitants of T,
but they are all equal.

e | T can express the existence of something of type T that is
not extensional w.r.t. its parameters.
@ The choice principle for type T is
VP:T —P. (Vx:T. | P[x]) | (Vx:T. P[x])
@ In Nuprl we can prove

e The choice principle is true for N and for N — N
o The choice principle is false for (N — N) =+ N

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

How does Nuprl prove Brouwer's theorem?

o It satisfies both weak and strong forms of the continuity
principle for numbers.
o let B=N—>NandN,={0,1,...n—1}
o If F € B— N then
weak Vf:B.13n:N.Vg:B. F(g) = F(f)if (f =g € N, = N)
strong |IM : n:N — (N, = N) — (N |J Unit). Vf:B. ({3n:
N. M(n,f) = F(f)) A (Yn:N. M(n, f) = F(f) if M(n,f) € N)
@ Nuprl has two (and only two) induction principles
e Induction on N
e Bar Induction

@ Using Bar Induction we prove FAN, and from FAN and the
strong continuity principle we prove Brouwer's theorem that
all functions from [0, 1] — R are uniformly continuous.

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

The constructive real numbers

R = {r:Nt > 7Z|
Vn,m:N. |[nxr(m)—mxr(n)| <2(n+m) }

r(n) r(m),gl_’_l

then]

2n 2m n m
SO)\n.réz) is Bishop's regular
(r=s) = Vn.|r(n)—s(n) <4
(r<s) = 3n.r(n)+4<s(n)
(r#s) = (r<s)V(s<r)
Fun(f,l) = Vx,y:{r:R|rell.(x=y)=(f(x)="f(y))
SFun(f,l) = Vx,y:{r:R|rel}l.(f(x)#f(y)) = (x#y)

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

Brouwer’s theorem

Cont(f,lI) = Ve>0.30>0.VYx,y:{r:R|rel}.
x =yl <d=[f(x) = fly)| <e

Theorem 1: Va, b:R. (a < b) = (Cont(f,[a, b]) < Fun(f,]a, b]))
Theorem 2: Va, b:R. (a < b) = (Cont(f, [a, b]) & SFun(f,]a, b]))

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

Bar Induction Rule

H + Te Type (1)

H, n:N, s: (N, - T) F B(n,s)V-B(ns) (2)

H, a:(N— T) + [3n:N. B(n,a) (3)

H, n:N,s:(N, — T),x:B(n,s) + f(n,s)e X(n,s) (4)

H, n:N,s:(N, = T),x:P + f(n,s)e X(n,s) (5)
P=vt:T.f(n+1,s.t) € X(n+1,s.t)

st=Xm.if m=n then t else s(m) (6)
H + f(0,c) € X(0,c) (7)

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

The continuity principle is constructive

@ For F € B — N, e € Unit the constructive content of strong
continuity is an Mg € n: N — (N, — N) — (N | Unit)

o Mg = An,f. ve.(F(f)?e : o) where f(x) = if x < 0 then L
else if x < n then f(x) else exception(e; o)

@ Kreisel and others (e.g. Escardo and Xu) have shown that no
such M can be extensional. This means that extensionally
equal F = G € B — N can have Mg(n, f) # Mg(n, f).

@ We can (and must) truncate the strong continuity proposition.

@ The truncated version is still strong enough for many
purposes, in particular, Brouwer's theorem.

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

How do we know that Nuprl is consistent?

@ Doug Howe defined the t; ~ t; (computational bi-simulation)
relation and proved its crucial properties.

@ Stuart Allen gave an "inductive-recursive” definition of the
partial equivalence relation semantics for the types in a Nuprl
universe. He then converted this into a recursive definition.
Using this semantics he defined the truth of a Nuprl sequent
H = C ext t.

@ Vincent Rahli and Abhishek Anand have formalized all of this
in Coq and proved (most of) the rules of Nuprl (work still
ongoing).

@ Bar Induction is powerful enough to prove that the predicative
part of Coq is consistent. Therefore its soundness proof needs
some more powerful principle. We used PV =P in the
impredicative Prop universe. We believe bar induction for
other reasons due to Brouwer and Kleene.

Mark Bickford Formalized Brouwerian Real Analysis using the Nuprl proof assist

