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1. Background

A modular category C is a non-degenerate ribbon fusion category over C [37, 1]. Modular categories
arise in a variety of mathematical subjects including topological quantum field theory [37], conformal field
theory[27], representation theory of quantum groups [1], von Neumann algebras [20], and vertex operator
algebras [28]. They are quantum analogues of finite groups as illustrated by the Cauchy and Rank-
Finiteness theorems [4]. This analogy extends to applications in physics: the symmetries of (bosonic)
topological phases of matter are related algebraically to modular categories.

Drinfeld centers, which are fundamental examples of modular categories, play important role in clas-
sification of fusion categories up to categorical Morita equivalence. It was shown in [11, 19] that two
tensor categories are Morita equivalent if and only if their centers are equivalent as braided tensor cate-
gories, so the center is a complete invariant of Morita equivalence. For example, a fusion category A is
group-theoretical [17], i.e., Morita equivalent to a pointed fusion category, if and only if its center Z(A)
contains a Lagrangian subcategory. Existence of such a subcategory can be easily determined by looking
at the S- and T -matrices. In a similar vein, extensions and equivariantizations of fusion categories can
be characterized in terms of their centers. This approach was used in [18] where the categorical analogue
of Burnside’s paqb-solvability theorem was proved. Classification of module categories can also be done
in terms of centers, since module categories over a fusion category A are in bijection with Lagrangian
algebras in Z(A) [12].

There is an approach to classification of modular categories based on the study of the categorical
Witt group W. This group was introduced and studied in [9, 10]. It consists of equivalence classes
of modular categories modulo Drinfeld centers (the group operation is the Deligne tensor product of
categories). The above equivalence relation is called the Witt equivalence. This definition extends the
classical definition of the Witt group of quadratic forms. Thus, one can try to classify modular categories
up to a Witt equivalence, or, which is the same, describe the groupW. A recent progress in this direction
was made in [10]. It was shown there that unlike the classical Witt group (which is a torsion group),
the categorical Witt group W contains both a torsion part and a free part. All non-classical examples of
simple anisotropic categories known at present come from certain modular categories C(g, `) associated
to affine Lie algebras. These categories are defined as follows. Let g be a finite dimensional simple Lie
algebra and let ĝ be the corresponding affine Lie algebra. For any positive integer ` we denote C(g, `)
the modular category of highest weight integrable ĝ-modules of level ` is a fusion category.

The categorical Witt group W provides a new perspective on classification of conformal field theories.
There is a common belief among physicists that all rational conformal field theories come from lattice
and WZW models via coset and orbifold (and perhaps chiral extension) constructions (see [27]). A
corresponding conjecture for modular categories says thatW is generated by the Witt equivalence classes
of categories C(g, `).
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Groups of braided autoequivalences of modular categories can be thought of as categorical analogues
of orthogonal groups. They received a lot of attention in recent years thanks to their relation with Picard
groups and extension theory of fusion categories. It was proved in [11, 19] that for a modular category C
there is an isomorphism

(1) Pic(C) ∼= Autbr(C)

between the group Pic(C) (the Picard group of C) consisting of invertible C-module categories and the group

Autbr(C) of braided auto-equivalences of C. From the physics prospective, Picard groups are symmetry
groups of topological phases of matter. From the algebraic prospective, these groups are classifying
objects for graded extensions of fusion categories. For example, given a finite group G, braided G-crossed
extensions of C are parameterized by homomorphisms G→ Pic(C) and some cohomological data.

Another approach to understand the structure of modular categories C is from the arithmetic properties
of their modular data, namely the S and T matrices. It is well known that the fusion rules of a modular
category can be recovered from its S-matrix by the Verlinde formula [1]. In addition, the S and T
matrices of a modular category C naturally defined a projective representation ρ̄C of SL(2,Z) which can
be factored through SL(2,Z/NZ), where N = ord(T ) [35]. This projective representation ρ̄C can be
lifted to 12 ordinary representations ρC of SL(2,Z) with congruence kernels, and these liftings admit a
certain symmetry under the action of the Galois group Gal(Q̄/Q), conjectured by Coste and Gannon
[22]. These arithmetic properties of the S and T matrices have led to the Cauchy theorem for spherical
fusion categories [4] and the congruence of the vector valued modular forms associated with a self-dual
C2-cofinite rational vertex operator algebras [15]. Moreover, they have inspired new approaches for the
classification of modular categories of small ranks [5] and dimensions [3]

2. Objectives

The main objective of the workshop was to understand the landscape of modular categories both as
pure mathematical structures and as generalized group-like symmetries of quantum systems.

As mathematical structures, we are interested in their classification and representation. A recent
breakthrough is the proof of the rank-finiteness conjecture: for a fixed rank, there are only finitely many
equivalence classes of modular categories. The number theoretical tools that are developed for the proof
can be used to advance several directions such as the classification of low rank modular categories. First we
will pursue the extension of rank-finiteness to pre-modular categories and unitary fusion categories. Two
more major open questions will be the property F conjecture for weakly integral modular categories and
whether or not the modular S, T matrices determine a modular category uniquely. Another direction
is the interplay of symmetries and modular categories as inspired by symmetry enriched topological
phases of matter. The famous example of such a symmetry protected topological phase of matter is the
new materials—topological insulators. Critical to both classification and finite group action on modular
categories is the study of their representations—module categories. Module categories arise in physics
as topological defects of topological phases of matter, and as topological boundary conditions. For
applications, it is important to parametrize all module categories over a given modular category.

Application of modular categories to physics and quantum computation continues to inspire new
mathematical problems and deepen our understanding of their structures. One direction is the close
connection between modular categories and conformal field theories. The partition function on the tori
for a conformal field theory is a modular form like object. So we will explore the possibility of attaching
a modular form like object to a modular category with some extra data, potentially just a module
category. Another direction is the promotion of a group symmetry of a modular category to a local
gauge symmetry—so-called gauging. Gauging is the inverse of the procedure called taking the core by
Drinfeld-Gelaki- Nikshych-Ostrik, and can also be regarded as a construction of new modular categories
from an old one together with a finite group action. In particular, it leads to a large class of weakly
integral modular categories by gauging finite group symmetries of pointed modular categories.
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A long-term objective is to establish a robust, cohesive community of researchers working in modular
categories and their applications. Vital to this objective is the inclusion of junior researchers and re-
searchers in underrepresented groups in the effort, with both applied and theoretical backgrounds. Our
workshop will emphasize this broad participation. We expect to find new approaches to old problems and
open new directions on a mathematical structure that sits in the triple juncture of mathematics, physics,
and computer science.

3. Workshop Summary

3.1. Participants. The participants were diverse in nearly every respect. For example:

• Stage of Career: 1/3 students/postdocs, 1/3 full professors and 1/3 assistant/associate professors
or equivalent.

• Scientific backgrounds: Each of the areas: mathematical physics, condensed matter, topology,
Hopf algebras, fusion categories, conformal field theory and subfactors is the central field of study
for at least 2 participants.

• Underrepresented groups: 7 participants were from one or more underrepresented groups (lower
than expected due to several last-minute cancellations).

• International Breadth: researchers working in 11 different countries participated, covering all
continents except Africa and Antartica.

It is worth noting that we had an unusual number of cancellations, for various reasons including fear
of the Zika virus. Many participants expressed concern over issues related to political unrest. Neither
of these concerns had any real effect on the participants, and we would not hesitate to organize another
workshop in Oaxaca.

3.2. Lectures. The first day of the workshop was devoted to the theory of modular categories. Day 2
mainly focused conformal field theory, vertex operator algebras and their relations to modular categories.
Day 3 emphasized the topics on Hopf algebras and topological quantum field theory. Day 4 consisted
talks on some of the above topics and more which included subfactors, tensor categories, vector valued
modular forms and representations of vertex operator algebras. Day 5 was scheduled for other related
topics.

Due to the scientific diversity of the participants, we asked several experts to give introductory lectures
on their area, rather than the more traditional talks on recent advances in their own research. This was
apparently successful, as several participants singled out this aspect of our workshop in their feedback.
These introductory lectures were as follows:

• Victor Ostrik: Introduction to modular tensor categories and those arising from quantum groups
• Xiao-Gang Wen: Applications of braided fusion category to classify topological orders in 2-

dimensional matter
• Alexei Davydov: Witt group of modular categories
• Ingo Runkel: Conformal field theory and universality
• Chongying Dong: On orbifold theory
• Yasuyuki Kawahigashi: Subfactors, conformal field theory and modular tensor categories
• Chelsea Walton: Survey of Quantum Symmetry in the context of Hopf (co)actions
• Noah Snyder: Topological Field Theory and Modular Tensor Categories
• Hans Wenzl: Centralizer Algebras for Quantum Groups
• Emily Peters: Subfactors, planar algebras, and fusion categories
• Scott Morrison: Modular data for centres
• Terry Gannon: Vector-valued modular forms and modular tensor categories

Ostrik’s lecture introduced the definition of modular categories and described one of the main construc-
tions, namely quantum groups at roots of unity. Davydov presented a recent very successful approach
to understanding modular categories that has become a central theme: the Witt group. Morrison’s talk
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brought us up to date by illustrating some computational tools for determining the modular data of a
given fusion category.

Wen’s lecture explained the main application in physics: modular categories as anyon models of
topological phases of matter. This lecture was in some sense prophetic–this application was the subject
of the 2016 Nobel prize in physics awarded 2 months after our workshop, and Wen himself was honored
as the 2017 recipient of the Buckley prize in physics (jointly with A. Kitaev).

Conformal field theory is, in a sense, the father of modular categories (maybe in the same sense
that topology is its mother). Runkel, Dong, Gannon and Kawahigashi’s lectures covered various facets
of conformal field theory, from its physical origins to various descriptions in terms of vertex operator
algebras and von Neumann algebras as well as some details on the number theoretic connections through
characters.

Snyder’s talk covered the topological side of modular categories alluded to above. In particular, he
described work of Douglas, Bartlet, Schrommer-Pries and Vicary that establishes a precise connection
between topological quantum field theory (of various types) and modular categories.

Walton, Wenzl and Peters each covered distinct areas that connect modular categories to three seem-
ingly distant fields: Hopf algebras (a source of both examples and inspiration for modular categories),
representation theory of quantum groups (through braid group descriptions of centralizer algebras) and
subfactors (the main source of so-called “exotic” modular categories.

3.3. Selected Highlights of Presentations. Here we give further details on some of the introductory
lectures (derived from summaries provided by the speakers).

Chongying Dong (University of California at Santa Cruz): On orbifold theory
The orbifold theory studies a vertex operator algebra V under the action of a finite automorphism

group G. Vertex operator algebra V is called rational if its module category is semisimple. Vertex operator
algebra V is called C2-cofinite if the subspace spanned by u−2v for u, v ∈ V has finite codimension
in V. The well known orbifold theory conjecture says that if V is rational, then V G is rational and
every irreducible V G-module occurs in an irreducible g-twisted V -module for some g ∈ G. Proving this
conjecture is definitely the major task in orbifold theory. In the case that G is solvable, the rationality
and C2-cofiniteness of V G have been established in [7]. Professor Dong present a recent result with Li
Ren and Feng Xu [16] on a progress in proving the orbifold theory conjecture: If V G is rational and
C2-cofinite, then every irreducible V G-module occurs in an irreducible g-twisted V -module for some g.
So their result together with those in [7], [26] solves the orbifold theory conjecture completely if G is
solvable.

Official Abstract: This talk will report our recent work on orbifold theory. The Schur-Weyl duality,
generalized moonshine and classification of irreducible modules for the orbifold theory will be discussed.

Yasuyuki Kawahigashi (The University of Tokyo): Subfactors, conformal field theory and mod-
ular tensor categories

Kawahigashi presented theory of local conformal nets, which gives an operator algebraic description
of a chiral conformal field theory. He explained representation theoretic aspects and presented a recent
construction of a local conformal net from a vertex operator algebra and back, which is his joint work
with Carpi, Longo and Weiner [30, 8].

Official Abstract: We present an operator algebraic formulation of chiral conformal field theory and
show how it is related to subfactor theory. Appearance of a modular tensor category through representation
theory and the role of alpha-induction machinery are explained. We also exhibit the current status of the
relations between our operator algebraic approach and the one based on vertex operator algebras.

Scott Morrison (Australian National University): Modular data for centres
Morrison described “the modular data machine”, a pleasantly successful algorithm for determining

the modular data of a Drinfeld centre, using as input only the Grothendieck ring of the original fusion
category. The algorithm in turn computes the conductor N , the abstract SL(2,Z/NZ) representation
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type, the T -matrix, Frobenius-Schur indicators, and finally the Galois action on simples. At each point
there may be many consistent choices, and much of the ”fine-tuning” of the algorithm involves controlling
the resulting combinatorial growth. A penultimate step solves linear equations describing the change of
basis from an arbitrary representative of the representation type to the basis of simples. Finally, we
attempt to solve a system of quadratic equations. Although the final step is potentially arbitrarily
difficult, we find for many examples that it is effective. In particular, the modular data machine very
quickly determines the modular data for the extended Haagerup subfactor, essentially automating the
arguments of [23]. As another application, the modular data machine proves that the “c = 2” category
remaining in Larson’s classification of non-self-dual rank 4 categories [31] can not exist, as there is no
consistent modular data.

Official Abstract: The classification of small index subfactors has resulted in the discovery of some
rather unusual fusion categories. Those coming from the extended Haagerup subfactor seem particularly
interesting — at this point we know of no relationship to any family or standard construction. As part
of the effort to understand these unusual objects, we have computed the modular data for the centres of
these fusion categories. As it turns out, we need to know remarkably little about the fusion categories; the
conditions on modular data are so restrictive that we can leverage information about the Galois action
and the representation theory of SL(2,Z) to completely determine the modular data. Time permitting,
I’ll indicate the range of examples we’ve since tested these techniques against.

Terry Gannon (University of Alberta): Vector-valued modular forms and modular tensor cate-
gories

Gannon began his talk with the modular data of the Drinfeld doubles of dihedral groups and semi-
dihedral groups of order 8n. He expected the T -matrices of these Drinfeld doubles for n = 2 were the
same which would be counter examples for one of the suggested open questions. However, he verified
later that the assertion was incorrect. After this example, he turned to chiral conformal field theory
which has two mathematical formulations, namely vertex operator algebras (VOA) and conformal nets
of factors. In both case, their category of representations is modular tensor category. He raised a
reconstruction question from modular category and conjecture that given any modular tensor category,
there is a rational VOA and a rational conformal net whose category of representations is that category.
The second question is the classification of VOA for a given modular category and central charge. Since the
characters of a rational VOA is vector valued modular form in which S and T matrices are normalizations
of the modular data of the underlying modular category. Studying the vector valued modular form for
the representations of SL(2,Z) associated with a modular category is an approach for the classification
question. Some example of vector valued modular form for the modular data of the double of a Haagerup
subfactor was demonstrated. However, whether this vector valued modular form is the character of a
VOA was not known.

Official Abstract: In my talk I’ll explain how to find vector-valued modular forms whose multiplier is
the modular data of a modular tensor category, and how that can help us reconstruct a rational vertex
operator algebra from that category.

In addition to these introductory lectures, we had another 11 more technical talks on recent advances
in all of these areas. The following highlights are derived from the summaries provided by a few of the
speakers are as follows:

Paul Bruillard (Pacific Northwest National Laboratory): Rank Finiteness for Premodular
Categories

Bruillard’s talk addressed connections between modular categories and number theory. In particular,
he discussed the Cauchy Theorem for Modular Categories and number theoretic techniques used to prove
Rank-Finiteness for Modular Categories [4].

Official Abstract: A physical system is said to be in topological phase if at low energies and long wave-
lengths the physical observables are invariant under smooth deformations. These physical systems have



6 MODULAR CATEGORIES–THEIR REPRESENTATIONS, CLASSIFICATION, AND APPLICATIONS (16W5049)

applications in a wide range of disciplines, especially in quantum information science. A quantum com-
puter based on such systems are topologically protected from decoherence. This fault-tolerance removes
the need for expensive error–correcting codes required by the qubit model. Topological phases of matter
can be studied through their algebraic manifestations, modular categories. Thus, a complete classifica-
tion of these categories would provide a taxonomy of admissible topological phases. In this talk we will
discuss connections between modular categories and number theory. This connection allows one to show
a finiteness result for modular categories that makes classification tractable, and provides new tools for
classification. Time permitting we will cover a generalization of these finiteness results to premodular
categories. Information Release: PNNL-SA-120321

Julia Plavnik (Texas A&M University ): On the classification of weakly integral modular cate-
gories

Plavnik’s talk was a survey on the current situation of the classification program of weakly inte-
gral modular categories. Specifically, she discussed the progress by dimension: modular categories of
Frobenius-Perron dimension 4m [3] and 8m [6]; and by rank: weakly integral modular categories of rank
6 and 7.

Official Abstract: In this talk we will give a panorama about the state of the problem of classification
of weakly integral modular categories at the moment. We will present some of the known results for low
rank and for specific dimensions, like 4m and 8m, with m a square-free odd integer. We will also explain
some of the techniques that we found useful to push further the classification.

Jurgen Fuchs (Karlstad University): Correlators for non-semisimple conformal field theories
Fuchs began his talk with a fundamental task in CFT which is to determine all correlators. A more
concrete goal is to provide universal expressions for all correlators. Correlators are special elements in an
appropriate space of conformal blocks. Conformal blocks as vector spaces admit actions of mapping class
groups and they can be realized as morphism spaces of suitable category D. In his talk, such suitable
category D is a modular tensor category which may not be semisimple. He then turned to the bulk
theory. The bulk field correlators of logarithmic conformal field theories that are based on modular finite
ribbon categories D can be described by a universal formula. Consistent systems of bulk field correlators
in such theories are in bijection with modular invariant Frobenius algebras in D.

Official Abstract: Given a factorizable finite ribbon category D, by work of Lyubashenko one can
associate to any punctured surface M a functor BlM from a tensor power of D to the category of finite-
dimensional vector spaces. The so obtained vector spaces BlM (−) carry representations of the mapping
class groups Map(M) and are compatible with sewing, in much the same way as the spaces of conformal
blocks of a (semisimple) rational conformal field theory. I will present a natural construction which, given
any object F of D, selects vectors in all space BlM (F, ..., F ) (i.e. when all punctures on M are labeled
by F ). If and only if the object F carries a structure of a ’modular’ commutative symmetric Frobenius
algebra in D, the vectors obtained by this construction are invariant under the mapping class group actions
and are mapped to each other upon sewing. Thereby they are natural candidates for the bulk correlators
of a conformal field theory with bulk state space given by F . (Joint with C. Schweigert [21].)

Jan Priel (University of Hamburg): Decomposition of the Brauer-Picard group
The main point of Priel’s talk was to argue that the Brauer-Picard group has naturally a structure

very similar to a Tits system or a BN-pair. Therefore, there are subgroups of the Brauer-Picard group
that bear a resemblance to a Borel subgroup, a Cartan subgroup, a Weyl group etc. It is a systematic
approach to understand the Brauer-Picard group [25]. In addition, these subgroups have an interesting
physical interpretation (e.g. EM-dualities, gauge symmetries etc.)

Official Abstract: Given a fusion category C, the Brauer-Picard group BrPic(C) is the group of equiv-
alence classes of invertible C-bimodule categories. It is an important invariant of C and appears as a
key ingredient in group extensions of fusion categories. From a physics point of view, this group is also
interesting, since it is the symmetry group of certain 3-dimensional topological quantum field theories. In
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this talk, I would like to present an approach to calculate the Brauer-Picard group of the representation
category of a finite group by providing a natural decomposition.

Henry Tucker (University of Southern California): Frobenius-Schur indicators and modular
data

Tucker’s talk began with the definition of Frobenius-Schur indicators for spherical fusion categories
C [34] and a formula in term of the modular data of Z(C) [33]. He then addresses the question that
whether the indicators distinguish two pseudo-unitary fusion categories with the same fusion rules. It
has been shown in [2] that the Tamabra-Yamagami categories are completely distinguished by their
Frobenius-Schur indicators. He extended this result for a family of near groups by deriving a formula of
the Frobenius-Schur indicators in terms of the Gauss sum of the underlying metric groups. He obtained
the formula by computing the modular data of the center of the near groups. Assuming a conjecture
of Evans-Gannon, he also obtained a formula of indicators of another family of the near groups. This
formula involves the Gauss sums of two mysterious metric groups arise from this family of near groups.

Official Abstract: In this talk we will give a panorama about the state of the problem of classification
of weakly integral modular categories at the moment. We will present some of the known results for low
rank and for specific dimensions, like 4m and 8m, with m a square-free odd integer. We will also explain
some of the techniques that we found useful to push further the classification.

Cris Negron (Louisiana State University): Gauge invariants from the antipode for Hopf algebras
with the Chevalley property

Negron focused on the production of gauge invariants for non-semisimple Hopf algebras. Namely,
he discussed some recent joint work of himself and S.-H. Ng [32] on the preservation of the traces of
the powers of the antipode under gauge equivalence, and it’s relationship to certain approaches to non-
semisimple Frobenius Schur indicators introduced in [29] and [36]. In this work it was shown that among
so called Chevalley Hopf algebras one can use the fusion category of semisimple representations in the
larger category of all representations, and the robust theory of pseudo-unitary fusion categories, to verify
that the traces of the powers of the antipode are gauge invariants. As it relates to the indicators, he
discussed how the same methods used to verify gauge invariance of these traces can be used to verify
preservation of a certain distinguished object in the pivotal cover of the category of representation of a
Chevalley Hopf algebra, under gauge equivalence. This leads to an alternate proof of gauge invariance of
the indicators for Chevalley Hopf algebras, a result due originally to [29].

Official Abstract: We will discuss invariance of the order of the antipode, and traces of the powers
of the antipode, under gauge equivalence. In particular, we will see that these values are in fact gauge
invariants for Hopf algebras with the Chevalley property (e.g. Taft algebras and duals of pointed Hopf
algebras). If time permits we will discuss how our study relates to recent efforts of Shimizu to produce a
categorial approach to the indicators of a non-semisimple tensor category. This is joint work with Richard
Ng.

Patrick Gilmer (Louisiana State University): An application of TQFT to modular representation
theory

Let K be an algebraically closed field of characteristic p. Let Lp(λ) denote the K-irrep of Sp(2g,K)
with highest weight λ. Gilmer defined certain sets of even or odd small p-colorings of a certain graph
with g loops and a certain edge colored 2c. Gilmer said that the dimension of Lp(λ) for the p− 1 weights
described below could be identified with the numbers of such even or odd colorings.

This is a step in deriving the following theorem due to Gregor Masbaum and Gilmer. The proof of this
theorem uses a TQFT defined over Z[ζp]. Gilmer also indicated how this TQFT is constructed within
the the SO(3) Witten-Reshetikhin-Turaev TQFT which is defined over Z[ζp,

1
p ] (originally defined over

C). They adopt the the skein theory approach of Blanchet, Habegger, Masbaum and Vogel [24].
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Theorem Let p ≥ 5 be prime and put d = (p− 1)/2. For rank g ≥ 3, consider the following dominant
weights for the symplectic group Sp(2g,K):

λ =

 (d− c− 1)ωg + c ωg−1 for 0 ≤ c ≤ d− 1 (Case I)
(d− c− 1)ωg + (c− 1)ωg−1 + ωg−2 for 1 ≤ c ≤ d− 1 (Case II)
(d− 2)ωg + ωg−3 (Case III)

Put ε = 0 in Case I and ε = 1 in Case II and III. Also put c = 0 in Case III. Then

dimLp(λ) =
1

2

(
D(2c)
g (p) + (−1)εδ(2c)g (p)

)
where

D(2c)
g (p) =

(p
4

)g−1 (p−1)/2∑
j=1

(
sin

πj(2c+ 1)

p

)(
sin

πj

p

)1−2g

δ(2c)g (p) = (−1)c
41−g

p

(p−1)/2∑
j=1

(
sin

πj(2c+ 1)

p

)(
sin

πj

p

)(
cos

πj

p

)−2g
.

Official Abstract: For p > 3 a prime, and g > 2 an integer, we use Topological Quantum Field Theory
(TQFT) to study a family of p-1 highest weight modules Lp(λ) for the symplectic group Sp(2g,K) where
K is an algebraically closed field of characteristic p. This permits explicit formulae for the dimension
and the formal character of Lp(λ) for these highest weights. This is joint work with Gregor Masbaum.

3.4. Open questions. Some open questions were presented by the participants during the workshop.
These questions were summarized as follows:

• Does the modular data, (S, T ), determine the modular category?
• Does the T -matrix determine the modular category? Here we must assume pseudo-unitary:

S =

(
1 ±1
±1 ∓1

)
and T =

(
1 0
0 i

)
is a counterexample otherwise.

• Let Bn, the n-stranded braided group, act on X⊗n for some object X in a modular category
C. Consider indices i1, i2, . . . , in+1, then the pure braid group acts on Hom(Xi1 , Xi2 ⊗ · · · ⊗
Xin+1

). This gives representations of the pure braided group Pn. Can we reconstruct the modular
category, C, from these representations (for all choices of X). Take SU(2)2 and Ising modular
category. These are both rank 3 and each only has one interesting object. Does this provide a
counter example?

• Consider Pn acting on Hom(Xi1 , Xi2⊗· · ·⊗Xin+1) as in the previous question. This action splits
via a finite quotient of Pn. Is this action always semisimple for a modular tensor category? What
about unitary MTC?

• Let C be a modular category over C. What is the field of definition? More specifically, is it true
that the field of definition is Q(T )? What is the smallest field in which F and R matrices can be
solved for.

• If C is properly premodular, does the inclusion Q(S) ⊆ Q(T ) sill hold?
• Property F Conjecture: Let Σg,n be a genus g surface with n punctures and C a modular category.

We have a representation ρ : MCG(Σg,n) → H. The image is finite if and only if C is weakly
integral.

• Is the field of definition of a (pre)modular category cyclotomic?
• Is the minimal field of definition well-defined for MTC?
• Does every non-pointed integral modular category contain a nontrivial symmetric subcategory?
• Formula for Frobenius-Schur indicators in premodular (braided fusion) in terms of S, T , and the
R-matrix?

• What is the rank of Z(C) in terms of the rank of C?



MODULAR CATEGORIES–THEIR REPRESENTATIONS, CLASSIFICATION, AND APPLICATIONS (16W5049) 9

• Does the representation type (of the modular representation of SL(2,Z) determine a modular
category?

• If two finite groups have the same character tables are their composition factors the same?
• Let C be a nondegenerate finite braided tensor category (possibly not semisimple). Is there a

classification program by “smallness”?
• Let C be (pseudo-unitary) premodular with C′ = sV ec. Does there exist a modular category D

containing C such that dimD = 2 dim C? This is equivalent to a question of surjectivity of a
canonical map in the Witt group setting (See question 5.15 of [10]). If the answer is yes, then
there are exactly 16 possible D up to equivalence.

• Is there a notion of smallness that is more physically motivated (than the rank)? For instance,
given a random category, what is most likely for you to get?

• Does the rank-finiteness theorem hold for a general premodular category?
• Does there exist C premodular such that Z2(C) = sV ec not of the form sV ec ⊗M where M is

a modular category? Here sV ec is equipped with the non-unitary choice of spherical structure,
it is rank 2 with simples I and J where the twists are 1, and dim I = 1, but dim J = −1. The
answer is yes for the unitary sV ec. For example PSU(2)6. The motivation is Reshetikhin-Turaev
invariants and is related to normalizable C.

• Uniqueness of the irreducible module with the minimal weight for a rational vertex operator alge-
bra. Let V be a rational and C2-cofinite vertex operator algebra, then V has only finitely many
inequivalent irreducible modules M i = ⊕m≥0M i

λi+m
with i = 0, ..., p where M i

λi+m
is the L(0)-

weight and M i
λi
6= 0, the λi which is called the weight of M i and the central charge c are rational

numbers [13], [14]. The irreducible module corresponds to the Frobenius-Perron dimension in
the S-matrix must have the minimal weight. It is well known that for rational vertex operator
algebras associated to positive definite even lattices, integrable highest weight modules for affine
Kac-Moody algebras, the minimal series of the Virasoro algebras, there is always a unique irre-
ducible module whose weight is minimal among the irreducible modules. It is expected that this
is true for any rational vertex operator algebra. The uniqueness of the irreducible module with
the minimal weight for a rational vertex operator algebra is important in studying the S-matrix,
the fusion product and the modular tensor category associated to the vertex operator algebra.

4. Comments from the participants after the workshop

Here we collect the comments, in addition to the testimonials posted on the BIRS webpage, from the
participants after the workshop.

• Expertly organized! The time between talks was especially valuable, as well as the problem
session.

• I enjoyed all the talks, the food and the workshop location. I had a wonderful week.
• I found this workshop to be very stimulating; I learned a lot and had many interesting discussions.

Working in the related areas of subfactors and fusion categories, I have recently become inter-
ested in modular categories. This workshop presented an excellent opportunity to learn about
modular categories from a variety of perspectives. I particularly enjoyed the introductory talks
from researchers in different areas with connections to modular categories, which were nicely
complemented by more specialized talks about recent progress. The non-mathematical aspects
of the workshop were excellent as well.

Oaxaca is a lovely place with an interesting cultural heritage and fantastic food. The hotel
treated us well.

• Oaxaca is a lovely place to do mathematics, and I’m looking forward to going back again.
The workshop was very exciting — a lot is going on in modular tensor categories at the

moment, with extraordinary connections to topological phases of matter. I enjoyed every talk
(not what I would usually say after a conference!) and conversations during the week led to
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several prospective new projects. I’ve already made some travel arrangements and invitations for
visits with other participants of the conference, to pursue these.

• I enjoyed the meeting and learned from the many excellent talks. I became interested in one of
the questions proposed in the Problem Session.

• Great opportunity to meet colleagues and exchange fresh ideas
• Mathematical discussions among participants of a wide range of different specializations were

very nice. The hotel and food were also excellent.
• I am very happy for the opportunity to see the leaders in the area.
• The topic of the workshop was right inside my research interests. So it was one of the rare

workshops where I could follow the details of nearly every talk. There were also many participants
I could discuss with, and all in all it was a very interesting and beneficial week for me. Thank
you for organising the workshop.

• Many interesting talks, many nice discussions. I continued a collaboration (with Terry Gannon),
but did not start a new one.

• I learned a lot from the talks and from the many fruitful discussions I had with other participants.
The conference was very well organised. I liked the fact that many talks were overview talks or
introduction talks. The organised trip to some of the tourist attractions was a great idea and I
enjoyed it a lot. All in all, I only have great impressions of this conference.

• Everything was good, the open problems session was excellent, and the organization was good.
• I loved being updated on the most recent developments in the subject, including work in progress.

The entire workshop was very enjoyable and at a very high level. The conference venue is very
attractive.

• The meeting was extremely positive in both the mathematical and non-mathematical context. It
was very useful to talk with a wide range of specialists in different topics that have as a common
point modular categories. It is important to learn about the different possible approaches, con-
nections and tools to advance in the understanding of these structures. I had the chance to work
with some of my colleagues in ongoing projects and I have also started discussions with some
other researchers that might end in new collaborations.

• This meeting was excellent. The location was superb and the talks were illuminating. Discussions
at this conference have spawned new work.

5. Outcomes and Future Directions

Many of the participants had not met one another before our conference. This was particularly true
for the younger participants and the participants from Mexico. But there were lively discussions between
talks, at the end of the days, and research collaborations during evenings. Gannon made an unsuccessful
effort to disprove a well-known problem in the field during the week. Many small groups worked in
evenings such as on the problem of attaching vector valued modular forms to modular categories.

Several follow-up conferences are already scheduled and we understand that several participants are
planning to organize another similar meeting at BIRS. At the Joint Mathematics Meetings in Atlanta
(January 2017) there are at least 4 separate special sessions that include organizers/participants from
Oaxaca.

Unitary modular categories are anyon models of topological phases of matter in two dimensions. As
the Nobel and Buckley prizes demonstrate, topological phase of matter is now well-established as a field
in physics, but the mathematical framework to capture these new physical phenomena is still lacking.
Modular categories provide such a framework for two dimensions, but a similar algebraic theory in
three dimensional is poorly understood. Our workshop is a significant step in establishing a subfield in
mathematics that is in and around modular categories and as an application providing the mathematical
backbone for the understanding of topological phases of matter.
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