
CMO-BIRS Workshop: Modern Techniques in Discrete Optimization:
Mathematics, Algorithms and Applications

November 1-6, 2015

MEALS

*Breakfast: 7:30 – 9:00 am, Restaurant Hotel Hacienda Los Laureles, Monday–Friday
*Lunch: 13:30 – 15:00 pm, Restaurant Hotel Hacienda Los Laureles, Monday–Friday
*Dinner: 19:00 – 21:00 pm, Restaurant Hotel Hacienda Los Laureles, Monday–Thursday
*Dinner: 19:30 – 22:00 pm, Restaurant Hotel Hacienda Los Laureles, Sunday only
*Continuous Coffee Breaks: Conference Room San Felipe, Hotel Hacienda Los Laureles

MEETING ROOMS

All lectures will be held in the Conference Room San Felipe at Hotel Hacienda Los Laureles. An LCD
projector, laptop, document camera and blackboards are available for presentations.

SCHEDULE

Sunday
14:00 Check-in begins (front desk at your assigned hotel - open 24 hours)
19:30–22:00 Dinner, Restaurant Hotel Hacienda Los Laureles
20:30 Informal gathering Hotel Hacienda Los Laureles;

a welcome drink will be served by the hotel.
Monday
7:30–8:45 Breakfast
8:45–9:00 Introduction and Welcome
9:00–10:00 Long lecture: Daniel Bienstock (Columbia Univ), Exploiting structured sparsity in mixed-

integer polynomial optimization
10:00–10:30 Coffee break
10:30–11:00 Short lecture: Antoine Deza (McMaster Univ.) On the diameter of lattice polytopes
11:00–11:15 Discussion break
11:15–11:45 Short lecture: Gabriela Araujo (UNAM), The cage problem
11:45–12:00 Discussion break
12:00–12:30 Short lecture: Walter Morris (George Mason Univ.) A directed Steinitz theorem for

oriented matroid programming
12:30–12:45 Discussion break
12:45–13:30 Long lecture: Shabbir Ahmed (Georgia Tech), Exact Augmented Lagrangian Duality in

Mixed Integer Linear Programming
13:30–13:35 Group photo
13:35–15:00 Lunch
15:00–17:30 Afternoon for self-organized discussions
18:00–19:00 Problem Session (all encouraged to present)
19:00-21:00 Dinner
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Tuesday
7:30–9:00 Breakfast
9:00–10:00 Long lecture: Thomas Rothvoss (Univ. Washington) , Constructive discrepancy mini-

mization for convex sets
10:00–10:30 Coffee break
10:30–11:00 Short lecture: Criel Merino (UNAM) , On zeros of the characteristic polynomial of

representable matroids of bounded tree-width.
11:00–11:15 Discussion break
11:15–11:45 Short lecture: Tamon Stephen (Simon Fraser Univ), Polyhedral aspects of circuit-based

pivoting algorithms
11:45–12:00 Discussion break
12:00–12:30 Short lecture: Alejandro Torrielo (Georgia Tech), Relaxations for a Dynamic Knapsack

Problem
12:30–12:45 Discussion break
12:45–13:30 Long lecture: Dorit Hochbaum (Univ. California, Berkeley), Effective combinatorial

algorithms for image segmentation and data mining
13:30–15:00 Lunch
15:00–16:00 Long lecture: Amitabh Basu (John Hopkins Univ), An introduction to cut generating

functions
16:00–19:00 Afternoon for self-organized discussions
19:00-21:00 Dinner

Wednesday
7:30–9:00 Breakfast
9:00–1:00 Self-organized visit to Monte Alban
1:00–15:30 Lunch on your own Downtown
16:30–17:00 Short lecture: Roger Z. Rios-Mercado (UANL), Districting Problems: Models, Algo-

rithms and Research Trends
17:00–17:15 Discussion break
17:15–17:45 Short lecture: Francisco Zaragoza (UAM, Atzcapozalco), Traveling Repairman Problem

on a Line with Unit Time Windows
17:45–18:00 Discussion break
18:00–18:30 Short lecture: Greg Blekherman (Georgia Tech), Spectrahedral Cones with rank 1 extreme

rays
18:30–18:45 Discussion break
18:45–19:15 Short lecture: Juan Pablo Vielma (MIT), Embedding Formulations, Complexity and

Representability for Unions of Convex Sets
19:00-21:00 Dinner
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Thursday
7:30–9:00 Breakfast
9:00–10:00 Long Lecture: Sebastian Pokutta (Georgia Tech) Extended formulations: the impressive

power of LPs and SDPs
10:00–10:30 Coffee break
10:30–11:00 Short lecture: Justo Puerto (Univ of Seville) New results on k-sum and ordered median

combinatorial optimization problems
11:00–11:15 Discussion break
11:15–11:45 Short lecture: Oktay Gunluk (IBM) Cutting planes from extended LP formulations
11:45–12:00 Discussion break
12:00–12:30 Short lecture: Kurt Anstreicher (Univ. of Iowa), Kronecker Product Constraints for

Semidefinite Optimization
12:30–12:45 Discussion break
12:45–13:30 Long lecture: Santanu S. Dey (Georgia Tech) Analysis of sparse cutting-plane for sparse

MILPs with applications to stochastic MILPs
13:30–15:00 Lunch
15:00–16:00 Problem session (all encouraged to present)
16:00–19:00 Free Discussion
19:00-21:00 Dinner

Friday
7:30–9:00 Breakfast
9:00–10:00 Long lecture: Levent Tunçel (Univ of Waterloo), Elementary Polytopes, their Lift-and-

Project Ranks and Integrality Gaps
10:00–10:15 Discussion Break
10:15–10:45 Short lecture: Matthias Köppe (Univ of California, Davis), Gomory-Johnson’s infinite

group relaxation: Algorithmic aspects
10:45–11:00 Closing
11:00–... Survivors self organize
Checkout
(by 12 noon)

** 5-day workshop participants are welcome to use Hotel Hacienda Los Laureles facilities until 3 pm on
Friday, although participants are still required to checkout of the guest rooms by 12 noon. **

3



ABSTRACTS
(in alphabetic order by speaker surname)

Speaker: Shabbir Ahmed Georgia Tech, GA, USA
Title: Exact Augmented Lagrangian Duality
in Mixed Integer Linear Programming
Abstract: We consider the general mixed integer (linear) programming (MIP) problem

zIP := inf{c>x|Ax = b,x ∈ X}, (1)

and its augmented Lagrangian dual (ALD)

zLD+
ρ := sup

λ∈<n
inf
x∈X
{c>x+ λ>(b−Ax) + ρψ(b−Ax)} (2)

where X is a mixed integer linear set, ρ is a given positive scalar, and ψ(·) is an augmenting function with
ψ(0) = 0 and ψ(u) > 0 for all u 6= 0. ALD provides a lower bound for the problem (1), i.e. zLD+

ρ ≤ zIP,
for all ρ > 0.

We consider non-negative level bounded augmenting functions in ALD for solving MIPs. Because of the
non-convexity in MIP (1), a non-zero duality gap may exist, that is zIP− zLD+

ρ > 0. Recently, Boland and
Eberhard showed that in ALD for MIPs, with a specific class of nonnegative convex augmenting functions,
lim
ρ→∞

zLD+
ρ = zIP holds. They also proved that if X is a finite set (e.g. a bounded pure IP), then there

exists a finite penalty coefficient which closes the duality gap. In this work, we significantly generalize the
results by Boland and Eberhard. Our main contributions are as follows:

1. We first provide a primal characterization for the ALD of an MIP. This is an alternative character-
ization to the one provided by Boland and Eberhard. Using this characterization, the ALD of an
MIP can be viewed as a traditional Lagrangian dual (LD) in a lifted space.

2. We give an alternative proof for the asymptotic zero duality gap property of ALD for MIPs when
the penalty coefficient is allowed to go to infinity. This was first proved by Boland and Eberhard.

3. We prove that ALD using any norm as the augmenting function with a sufficiently large but finite
penalty coefficient closes the duality gap for general MIPs. This generalizes the result by Boland and
Eberhard from the case of pure integer programming with a bounded feasible region to general MIPs
with unbounded feasible regions.

4. Using our primal characterization, we also present an example where ALD with a quadratic aug-
menting function is not able to close the duality gap for any finite penalty coefficient. This is joint
work with Mohammad Javad Feizollahi and Andy Sun.

Speaker: Kurt Anstreicher (University of Iowa)
Title: A Kronecker Product Constraints for Semidefinite Optimization
Abstract: We consider a new class of constraints for semidefinite optimization based on Kronecker products
of semidefinite matrices. These constraints generalize the well-known RLT and SOC-RLT constraints. We
show that the Kronecker product constraint generated by two second-order cone (SOC) constraints implies
all of the SOC-RLT constraints that can be generated from the two SOC constraints. The Kronecker
product constraint grows rapidly in size, but in the case of two SOC constraints has a block structure that
permits efficient generation of valid linear inequalities (cuts). Computational results on difficult instances of
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the two-trust-region subproblem (TTRS) shows that the approach utilizing cuts from a Kronecker product
constraint improves on the best previous results for computable convex relaxations of TTRS.

Speaker: Gabriela Araujo (UNAM)
Title: The Cage Problem
Abstract: A graph is k-regular if all the vertices have degree equal to k. The girth of a graph, denoted
by g, is the number of edges in the smallest cycle(s). The Cage Problem is related to the existence and
construction of regular graphs with a fixed girth and the minimum number of vertices possible.

A (k; g)-graph is a k-regular graph of girth g, and a (k; g)-cage is a (k; g)-graph of minimum order.
Cages were introduced by Tutte in 1947 and their existence was proved by Erdös and Sachs in 1963 for all
integer values of k and g with k ≥ 2. Since then most work carried out has focused on constructing the
ones with the smallest number of vertices.

The author has worked in this problem since 2006. She has constructed, jointly with several coauthors,
different families of ”small” (k; g)-graphs for many values of k and g. In this work, she will exhibit the
main techniques for constructing these graphs; using finite geometries. She will also exhibit the minimal
values for the upper bounds for the order of the cages known up to date.

Specially, related with the topic of this Conference, the author will talk about a specific problem, the
construction of (k; 5)-minimal cages using projective planes (finite geometries), and she will explain how
it relates to computer applications.

Speaker: Amitabh Basu The Johns Hopkins University, MD, USA
Title: An introduction to Cut-generating functions
Abstract: Cut-generating functions are a means to have “a priori” formulas for generating cutting planes
for general mixed-integer optimization problems. Let S be a closed subset of Rn with 0 6∈ S. Consider the
following set, parametrized by matrices R,P :

XS(R,P ) :=
{

(s, y) ∈ Rk
+ × Z`+ : Rs+ Py ∈ S

}
, (3)

where k, ` ∈ Z+, n ∈ N, R ∈ Rn×k and P ∈ Rn×` are matrices. Denote the columns of matrices R and
P by r1, . . . , rk and p1, . . . , p`, respectively. We allow the possibility that k = 0 or ` = 0 (but not both).
This general model contains as special cases classical optimization models such as mixed-integer linear
optimization and mixed-integer convex optimization.

Given n ∈ N and a closed subset S ⊆ Rn such that 0 6∈ S, a cut-generating pair (ψ, π) for S is a pair
of functions ψ, π : Rn → R such that

k∑
i=1

ψ(ri)si +
∑̀
j=1

π(pj)yj ≥ 1 (4)

is a valid inequality (also called a cut) for the set XS(R,P ) for every choice of k, ` ∈ Z+ and for all matrices
R ∈ Rn×k and P ∈ Rn×`. Cut-generating pairs thus provide cuts that separate 0 from the set XS(R,P ).
We emphasize that cut-generating pairs depend on n and S and do not depend on k, `, R and P . There
is a natural partial order on the set of cut generating pairs; namely, (ψ′, π′) ≤ (ψ, π) if and only if ψ′ ≤ ψ
and π′ ≤ π. The minimal elements under this partial ordering are called minimal cut-generating pairs.

Efficient procedures for cut-generating pairs. Several deep structural results were obtained by
Johnson about minimal cut-generating functions for S when S is a translated lattice, i.e., S = b+ Zn for
some b ∈ Rn \Zn. However, a major drawback is that the theory developed is abstract and difficult to use
from a computational perspective. A recent approach has been to restrict attention to a specific class of
minimal cut-generating pairs for which we can give computational procedures to compute the values ψ(ri)
and π(pj). We show how this is done when S is a translated lattice intersected with a polyhedron, i.e.,
S = (b+ Zn) ∩Q for some vector b ∈ Rn \ Zn and some rational polyhedron Q.
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Given such a set S ⊆ Rn, defineWS := Zn∩lin(conv(S)). A convex setB is called S-free if int(B)∩S = ∅.
A maximal S-free convex set is an S-free convex set that is inclusion wise maximal. A well-known theorem
others). It is known a maximal S-free convex set B containing the origin in its interior is a polyhedron
given by

B = {r ∈ Rn : ai · r ≤ 1 i ∈ I}. (5)

Theorem 1. Define the following pair of functions associated with B:

ψB(r) = max
i∈I

ai · r, πB(r) = inf
w∈WS

ψ(r + w) (6)

(ψB, πB) is a valid cut-generating pair. Moreover, the pair is “partially” minimal: for every cut-
generating pair (ψ, π) ≤ (ψB, πB), we must have ψ = ψB.

Thus, for every maximal S-free convex set B, (6) gives formulas to compute with the corresponding
cut-generating pair (ψB, πB). However, because of the partial minimality of (ψB, piB), it may be the case
that there exists a pair (ψ, π) with π ≤ πB and π(r) < πB(r) for some r ∈ Rn. The main question of
this talk is:

Question: Let S = (b+ Zn) ∩Q with b ∈ Rn \ Zn and a rational polyhedron Q. Given a maximal S-free
convex set B (5), decide if (ψB, πB) is minimal.

Speaker: Daniel Bienstock , (Columbia University)
Title: Exploiting structured sparsity in mixed-integer polynomial optimization
Abstract: Joint work with Gonzalo Munoz. Many ideas in (continuous) polynomial optimization algorithms
make use of the structural sparsity of the intersection graph of the constraints (Waki et al, Lasserre et al).
Often this leads to e.g. sum-of-squares or semidefinite relaxations whose solution is made more efficient
by leveraging the sparsity; however concrete convergence results are scarce. In this talk we describe linear
programming approximations to mixed-integer polynomial optimization problems where the intersection
graph of the constraints has fixed tree-width. The LP formulations, given epsilon ¿ 0, are polynomially
large in the problem data and in ε−1, and provably attain epsilon-optimality and feasibility guarantee. As
a consequence we obtain an LP-based polynomial-time approximation algorithm for the ACOPF problem
on graphs with bounded tree-width.

Speaker: Greg Blekherman (Georgia Tech, USA)
Title: Spectrahedral Cones with rank 1 extreme rays
Abstract: A spectrahedral cone C is a slice of the cone of positive semidefinite matrices with a linear
subspace L. The ranks of extreme rays of spectrahedral cones have been a subject of extensive study. It
is natural to ask for what subspaces L do all of the extreme rays of C have rank 1? When L is a union of
coordinate subspaces the answer was given by Agler-Helton-McCullough-Rodman. It turns out that this
question has an unexpected connection to algebraic geometry and we will present a full classification of
such spectrahedral cones based on the classification of small reduced schemes by Eisenbud-Green-Hulek-
Popescu. No knowledge of scheme theory will be necessary for the talk.

Speaker: Antoine Deza (McMaster University, Canada)
Title: On the diameters of Lattice polytopes
Abstract: Finding a good bound on the maximal diameter D(d,n) of the vertex-edge graph of a polytope
in terms of its dimension d and the number of its facets n is one of the basic open questions in polytope
theory. The Hirsch conjecture, formulated in 1957 states that D(d,n) is at most n-d. While the conjecture
was disproved by Santos in 2010, it is known to hold in small dimensions along with other specific pairs
of d and n. However, the asymptotic behavior of D(d,n) is not well understood: the best upper bound is
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quasi-polynomial. The behavior of D(d,n) is not only a natural question of extremal discrete geometry,
but is historically closely connected with the theory of the simplex method. We present older and recent
results dealing with the diameter of lattice polytopes.

Speaker: Santanu Dey (Georgia Tech, USA)
Title: Analysis of sparse cutting-plane for sparse MILPs with applications to stochastic MILPs
Abstract: While numerous families of cutting-planes have been studied for mixed integer linear programs
(MILPs), significantly lesser understanding has been obtained on the very important question of cutting-
plane selection from a theoretical perspective. State-of-the-art MILP solvers bias the selection of cutting-
planes towards sparse cuts: This is a natural choice since solving a MILP involves solving many linear
programs (LP) and LP solvers can take advantage of sparse constraint matrices. In a recent work with
Molinaro and Wang we presented a geometric analysis of the quality of sparse cutting-planes as a function
of the number of vertices of the integer hull, the dimension of the polytope and the level of sparsity.
We pursue this question of understanding the strength of sparse cutting-planes using completely different
techniques, so that we are also able to incorporate the information that most real-life MILP formulations
have sparse constraint matrices. This talk presents our recent work on the topic.

Speaker: Oktay Gunluk (IBM Research)
Title: Cutting planes from extended LP formulations
Joint with Bodur and Dash. Given a mixed-integer set defined by linear inequalities and integrality
requirements on some of the variables, we consider extended formulations of its continuous (LP) relaxation
and study the effect of adding cutting planes in the extended space. In terms of optimization, extended
LP formulations do not lead to better bounds as their projection onto the original space is precisely the
original LP relaxation. However, adding cutting planes in the extended space can lead to stronger bounds.
In this paper we show that for every 0-1 mixed-integer set with n integer and k continuous variables,
there is an extended LP formulation with 2n+k-1 variables whose elementary split closure is integral. The
proof is constructive but it requires an inner description of the LP relaxation. We then extend this idea
to general mixed-integer sets and construct the best extended LP formulation for such sets with respect
to lattice-free cuts. We also present computational results on the two-row continuous group relaxation
showing the strength of cutting planes derived from extended LP formulations.

Speaker: Dorit Hochbaum (Univ. of California, Berkeley, USA)
Title: Effective combinatorial algorithms for image segmentation and data mining
Abstract: We present a model for clustering which combines two criteria: Given a collection of objects
with pairwise similarity measure, the problem is to find a cluster that is as dissimilar as possible from
the complement, while having as much similarity as possible within the cluster. The two objectives are
combined either as a ratio or with linear weights. The ratio problem, and its linear weighted version, are
solved by a combinatorial algorithm within the complexity of a single minimum s,t-cut algorithm. We call
this problem ”the normalized cut prime” (NC’) as it is closed related to the NP-hard problem of normalized
cut.

The relationship of NC’ to normalized cut is generalized to a problem we call ”q-normalized cut”.
It is shown that the spectral method that solves for the Fielder eigenvector of a related matrix is a
continuous relaxation of the problem. In contrast, the generalization of the combinatorial algorithm solves
a discrete problem resulting from a relaxation of a single sum constraint. We study the relationship
between these two relaxations and demonstrate a number of advantages for the combinatorial algorithm.
These advantages include a better approximation, in practice, of the normalized cut objective for image
segmentation benchmark problems. Time permitting, I will discuss the application of NC’, as a supervised
machine learning technique, to data mining, and its comparison to leading machine learning techniques on
datasets selected from data mining benchmark.

Speaker Matthias Köppe (Univ. of California, Davis, USA)
Title: Gomory-Johnson’s infinite group relaxation: Algorithmic aspects
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The infinite group problem was introduced 42 years ago by Ralph Gomory and Ellis Johnson in their
groundbreaking papers titled ”Some continuous functions related to corner polyhedra I, II”. The technique,
investigating strong relaxations of integer linear programs by convexity in a function space, has at times
been dismissed as ”esoteric”. Now we recognize the infinite group problem as a technique which was
decades ahead of its time, providing the first ”cut-generating function” approach to integer programming.
It may be the key to today’s pressing need for stronger, ”multi-row” cutting plane approaches.

I survey the recent progress on the problem, focusing on algorithmic aspects, such as the automatic
extremality test for cut generating functions in the Gomory-Johnson model, its implementation in software,
and ongoing work on automatic discovery and proof of cutting plane theorems in the Gomory-Johnson
model. (based on joint work with A. Basu, R. Hildebrand, R. La Haye, M. Molinaro, Q. Louveaux, Y.
Zhou)

Speaker Criel Merino (UNAM, Mexico)
Title: On zeros of the characteristic polynomial of representable matroids of bounded tree-width.
Abstract: Traditionally, the focus from a graph theory perspective about the chromatic polynomial has
been to find the positive integer roots λ, which correspond to the graph not being properly colourable
with λ colours. A growing body of work has begun to emerge in recent years more concerned with the
behaviour of real or complex roots of the chromatic polynomial. Perhaps one of the outstanding open
questions concerning real zeros is to determine tight bounds on the largest real zero of the chromatic
polynomial. One such bound was given by A. Sokal, and more recently by F. M. Dong, and depends on
the maximum vertex degree of the graph. The corresponding invariant in Matroids is the characteristic
polynomial. We prove that, for any prime power q and constant k, the characteristic polynomial of any
loopless, GF (q)-representable matroid with tree-width k has no real zero greater than qk?1.

Speaker: Walter Morris (George Mason Univ. USA)
Title: A directed Steinitz theorem for oriented matroid programming.

Abstract: Holt and Klee proved that if P is a d-dimensional polytope and f is a linear function on P
that is not constant on any edge of P, there are d independent monotone paths from the source to the sink
of the digraph defined by the vertices and edges of P directed according to the directions of increase of f.
Mihalisin and Klee proved that every orientation of the graph of a 3-polytope that is acyclic and admits
3 independent monotone paths from the source to the sink is obtained from some 3-polytope P and some
linear function f on P. We prove analogs of Mihalisin and Klee’s theorem and the 3 and 4-dimensional
versions of Holt and Klee’s theorem for oriented matroid programs. Here acyclicity is replaced by the
requirement that there be no directed cycle contained in a face of the polytope.

Speaker: Sebastian Pokutta (Georgia Tech, USA)
Title: Extended Formulations: the expressive power of LPs and SDPs

Linear and semidefinite programming are two core optimization paradigms with many important ap-
plications in mathematics, engineering, and business. However, the expressive power of these modeling
paradigms is only partially understood so far and extended formulations are a powerful and natural tool to
analyze the possibilities and limitations of linear and semidefinite programming formulations. More pre-
cisely, extended formulations are concerned with studying the optimal representation of a combinatorial
optimization problem in terms of LPs, SDPs, or alternative conic programming paradigms. An extended
formulation is a higher dimensional description of the problem utilizing auxiliary variables. For the sake
of brevity of this abstract we will confine ourselves to linear programs, however the theory applies more
broadly to many other paradigms, such as e.g., semidefinite programming, which will be also at least
partially covered in the talk.

The main goal that we will be concerned with is to reduce the number of required inequalities in a linear
programming formulation by representing a given optimization problem in slightly higher dimensional space
or ruling out the existence of such formulations. Recently, extended formulations gained significant interest
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due to fundamental questions in optimization and complexity theory that are closely related to the notion
of extended formulations. In fact, extended formulations provide an alternative measure of ‘complexity’,
which is independent of P vs. NP: we count the number of required inequalities and the encoding of the
coefficients is disregarded. This distinctive criterion makes extended formulations very attractive as the
obtained statements are not subject to any complexity theoretic assumptions and it has been argued that
the resulting notion of complexity is more in line with how we solve linear programs. Moreover, this notion
of complexity might also provide supporting evidence for several conjectures in complexity theory.

More formally, our setup will be the following. Let P = {x | Ax ≤ b} ⊆ Rn be a polytope representing
a combinatorial optimization problem of interest. A polytope Q = {x | Ex ≤ d} ⊆ Rm with m ≥ n is
called an extension of Q if there exists a linear map π with P = π(Q). The smallest number of inequalities
required in any extension of P is called the extension complexity xc(P ) of P . Any extension Q can be used
as a surrogate to optimize over P and thus we are interested in finding the smallest possible extension. We
therefore ask:

What is the smallest number of inequalities required
in any extension Q of P?

Put differently, we aim for determining the extension complexity of P . In many cases using an extended
formulation can lead to an exponential saving in terms of the number of inequalities, i.e., a polytope P
with an exponential number of inequalities in the description Ax ≤ b can be expressed in slightly higher
dimensional space with a polynomial number of inequalities, allowing for efficient optimization over P via
linear programming (provided the coefficients are small). Examples include the Spanning Tree Polytope as
well as the extended formulations for the regular polygon, which can be used to approximate the second-
order cone efficiently. In several other important (and surprising cases), such as e.g., the Traveling Salesman
Polytope and Matching Polytope it can be shown that such compact formulations cannot exist.

The theory also naturally extends to approximate formulations and many surprising examples have been
recently obtained. For example, it was shown that the MaxCut Problem cannot be approximated better
than 1/2 with a polynomial size linear program. Also, the VertexCover Problem cannot be approximated
better than a factor of 2 using a polynomial size linear program.

In this talk I will provide an introduction to extended formulations and survey many of the aforemen-
tioned results in extended formulations, both in the linear and the semidefinite setting. I will also lay out a
reduction framework for establishing upper and lower bounds for the size of exact and approximate LP and
SDP formulations. This framework allows for surprisingly simple and convenient analyzes without relying
on any heavy machinery, making extended formulations very accessible without requiring any in-depth
prior knowledge of those results establishing the base hardness. I will conclude with various open problems
both in the exact and approximate as well as linear and semidefinite case.

Speaker:Justo Puerto (Univ. de Sevilla, Spain)
Title:New results on k-sum and ordered median combinatorial optimization problems
Abstract: In this talk, we address the continuous, integer and combinatorial k-sum and ordered median
optimization problems. We analyze different reformulations of these problems that allow to solve them
through the minimization of minisum optimization problems. This approach provides a general tool for
solving ordered median optimization problems and improves the complexity bounds of many ad-hoc algo-
rithms previously developed in the literature for particular versions of these problems.

Speaker : Roger Z. Rios-Mercado Univ. Autónoma de Nuevo León
TitleDistricting Problems: Models, Algorithms and Research Trends
Abstract: Districting or territory design involves locational decisions where a given set of basic or geographic
units must be partitioned so as to optimize some performance measure subject to pre-specified planning
requirements. Typical criteria usually sought are territory compactness, connectivity, balancing, similarity
with existing plan, etc. Depending on the particular application, different models or dispersion measure
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can be used. In this talk we will give an overview of the main elements involving districting decisions, and
present some of the models, and solution algorithms (exact and heuristic) that have been developed for
particular districting applications. We will close the talk discussing future research directions in this area.

Speaker: Thomas Rothvoss Univ. of Washington, Seattle, USA
Title: Constructive discrepancy minimization for convex sets

Abstract: A classical theorem of Spencer shows that any set system with n sets and n elements admits
a coloring of discrepancy O(n1/2). Recent exciting work of Bansal, Lovett and Meka shows that such
colorings can be found in polynomial time. In fact, the Lovett-Meka algorithm finds a half integral point
in any ”large enough” polytope. However, their algorithm crucially relies on the facet structure and does
not apply to general convex sets. We show that for any symmetric convex set K with measure at least
exp(-n/500), the following algorithm finds a point y in K∩[−1, 1]n with Omega(n) coordinates in {−1,+1}:
(1) take a random Gaussian vector x; (2) compute the point y in K ∩ [−1, 1]n that is closest to x. (3)
return y. This provides another truly constructive proof of Spencer’s theorem and the first constructive
proof of a Theorem of Gluskin and Giannopoulos.

Speaker: Tamon Stephen Simon Fraser Univ. Canada
Title: Polyhedral aspects of circuit-based pivoting algorithms

Abstract: We consider prospects for augmented pivoting algorithms for linearly constrained optimiza-
tion. Here, in addition to the local edge directions used in the simplex method, a discrete set of additional
directions are available. Some of these pass into the interior of the feasible region or of mid-dimensional
faces.

We focus on the case where the available directions are the circuits or elementary vectors, i.e. the
support minimal solutions to the homogenization of the equations defining the feasible region. These can
also be thought of as potential edge directions of the system under varying right-hand sides of the equations.
Once a direction is chosen, it is followed as far as feasibility allows.

A necessary condition for the existence of high-quality pivoting algorithms of this type is the existence
of short paths between the vertices of the feasible region in the sense of using only a small number of these
pivots and augmentations. This leads to the notion of the circuit diameter of a polyhedron P , which is
number of pivots in the longest minimal path between any pair of vertices in P . The circuit diameter is an
analogue of the combinatorial diameter of a polytope, which is the longest minimal path using only edge
moves. Thus the circuit diameter is a lower bound for the combinatorial diameter, and the bound is tight
for key families.

Borgwardt, Finhold and Hemmecke (2014) investigated circuit diameter and showed that dual trans-
portation polyhedra have a very low circuit diameter, lower than their combinatorial diameter. They
asked if the Hirsch bound of f − d (the number of facets of the polytope minus its dimension) which was
conjectured as an upper bound on the combinatorial diameter, might hold for the combinatorial diameter.

We show that some known non-Hirsch polyhedra, notably the Klee-Walkup polyhedron, are not counter-
examples to this circuit Hirsch conjecture. We survey current work and open questions.

Speaker: Alejandro Torrielo (Georgia Tech, USA)
Title: Relaxations for a Dynamic Knapsack Problem

Joint work with Daniel Blado and Weihong Hu. We consider a dynamic version of the classical knapsack
problem with the following formulation. Let N := {1, . . . , n} be a set of items. For each item i ∈ N we
have a non-negative, independent random variable Ai with known distribution representing its size, and
a deterministic value ci > 0. We have a knapsack of deterministic capacity b > 0, and we would like to
maximize the expected total value of inserted items. An item’s size is realized when we choose to insert it,
and we receive its value only if the knapsack’s remaining capacity is greater than or equal to the realized
size. Given any remaining capacity s ∈ [0, b], we may choose to insert any available item, and the decision
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is irrevocable. If the insertion is unsuccessful, i.e. the realized size is greater than the remaining capacity,
the process terminates.

This model and other like it have applications in scheduling, equipment replacement and machine
learning, to name a few examples. They also generally reflect some trends in optimization research and
its various application, which have focused attention on models in which uncertain data is not revealed
at once after an initial decision stage, but rather is dynamically revealed over time based on the decision
maker’s choices.

The deterministic knapsack is a special case, so this problem is NP-hard, and some variants are known to
be PSPACE-hard. Because the decision maker can choose any item to insert based on remaining capacity,
a solution is not simply a subset of items, but rather a policy that prescribes what item to insert under
all possible circumstances. Research on the model has therefore studied heuristic policies and tractable
relaxations. Our focus is mostly on the latter, deriving mathematical programming relaxations that can
be solved efficiently, and which can be used to design high-quality heuristics. Specifically:

1. We introduce a semi-infinite relaxation for the problem under arbitrary item size distributions, based
on an affine value function approximation of the linear programming encoding of the problem’s
dynamic program. We show that the number of constraints in this relaxation is at worst countably
infinite, and is polynomial in the input for distributions with finite support.

2. When item sizes have integer support, we show that non-parametric value function approximation
gives the strongest known relaxation from the literature, which has pseudo-polynomially many vari-
ables and constraints.

3. We theoretically and empirically compare these relaxations to others from the literature and show that
both are quite tight. In particular, our new relaxation is notably tighter than a variety of benchmarks
and compares favorably to the theoretically stronger pseudo-polynomial relaxation when this latter
bound can be computed.

Time permitting, we also discuss future work and open questions motivated by our results, including
the theoretical worst-case gap of our new relaxation, the possible strengthening of our relaxations, their
asymptotic behavior as the number of items grows, and others.

Speaker: Levent Tunçel (University of Waterloo, Canada)
Title:Elementary Polytopes, their Lift-and-Project Ranks and Integrality Gaps

Abstract: We consider some elementary polytopes and study the performance of some of the strongest
lift-and-project operators in computing the convex hull of integral points inside the given elementary
polytope. Our study includes the analysis of the number of major iterations required as well as an analysis
of the changes in the integrality gaps throughout these major iterations. This talk is based on joint work
with Y. H. (Gary) Au.

Speaker: Juan Pablo Vielma (MIT, USA)
Title: Embedding Formulations, Complexity and Representability for Unions of Convex Sets

We consider strong Mixed Integer Programming (MIP) formulations for a disjunctive constraint of the
form

x ∈
⋃n

i=1
Ci (7)

where {Ci}ni=1 ⊆ Rd is a finite family of compact convex sets. MIP formulations for (7) can can be divided
into two classes depending on their strength and types of auxiliary variables. The first class corresponds
to extended formulations that use both 0-1 and continuous auxiliary variables. Standard versions of such
extended formulations have sizes that are linear on appropriate size descriptions of the convex sets (e.g.
number of linear, quadratic or conic constraints) and have continuous relaxations with extreme points that
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naturally satisfy the integrality constraints on the 0-1 variables (such formulations are usually denoted
ideal and are as strong as possible). Extended formulations for polyhedral sets have been introduced by
Balas, Jeroslow and Lowe, for conic representable sets by Ben-Tal, Helton, Nemirovski and Nie and for
sets described through non-linear inequalities by Ceria, Merhotra, Soares and Stubs. The second class
corresponds to non-extended formulations that only use the 0-1 variables that are strictly necessary for
a valid formulation. Standard versions of such non-extended formulations are also linear sized, but are
often significantly weaker than their extended counterparts. Non-extended formulations include big-M
type constraints and ad-hoc formulations for specially structured polyhedral sets

A common feature of both classes is the use of n 0-1 variables that are constrained to add up to one.
However, in the polyhedral setting different uses of 0-1 variables can lead to non-extended formulations that
are ideal and smaller than the smallest extended counterpart. This allows such formulations to provide a
significant computational advantage for disjunctive constraints related to the modeling of piecewise-linear
functions. In this talk we describe a systematic geometric procedure to construct such non-extended for-
mulations with a flexible use of 0-1 variables in an attempt to explain and expand on the success of the
formulations from prior work with S. Ahmed and G. L. Nemhauser. This procedure is based on an embed-
ding of the disjunctive constraint into a higher dimensional space and leads to several theoretical questions
concerning the complexity of unions of polyhedra and the mixed basic semi-algebraic representability of
unions of convex basic semi-algebraic sets.

Speaker: Francisco Zaragoza ((UAM Azcapotzalco, Mexico)
Title: Traveling Repairman Problem on a Line with Unit Time Windows

Abstract: Let G = (V,E) be a graph and r ∈ V . For each e ∈ E, let `e > 0 be the length of e. For
each v ∈ V , a time window [av, bv] is given. A repairman starts in vertex r at time t = 0 and moves
trough the edges of G at unit speed. The Traveling Repairman Problem consists of finding a route for
the repairman that maximizes the number of vertices visited during their time windows. This problem
is known to be NP-hard even when G is a tree and each time window has unit length (Frederickson and
Wittman, 2012) or when G is a path and time windows are arbitrary (Tsitsiklis, 1992). The complexity of
the remaining case, that is when G is a path and all time windows are unitary, is still open. Much work
has been done in this case: there are approximation algorithms with guarantees 8 and 4 + ε in quadratic
time (Bar-Yehuda, Even, Shahar, 2005) and 3 in quartic time (Frederickson and Wittman, 2012). The
algorithm with guarantee 8 has been improved, to get a guarantee of 4 in quadratic time (López, Pérez,
Urban, and Zaragoza, 2014). All these algorithms use dynamic programming as the main tool. We have
improved the analysis of this algorithm to show that it guarantees less than 3. Our main tool was setting
up a linear program that describes the possible outcomes of the dynamic program, and solving it to find
the worst possible outcome. Joint work with Cynthia Rodriguez (University of Waterloo, Canada)
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