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1 Overview of the Field
Discrete optimization is a vibrant area of the mathematical sciences devoted to finding optimal solutions
given mathematical constraints that describe a finite or countable set of possible answers. For example, a
classical problem in discrete optimization is the traveling salesman problem: For given n cities and the costs
of traveling from city i to city j, we seek to find the cheapest route that visits each city once and returns
to the starting city. Discrete optimization problems naturally arise in many kinds of applications including
bioinformatics, telecommunications network design, airline and production scheduling, VLSI design, and
efficient resource allocation, to name just a few. At the same time, the calculation of solutions requires so-
phisticated mathematics, for instance, there are deep connections between semidefinite optimization models
and real algebraic geometry. The purpose of the workshop was to bring together researchers in the theory of
discrete optimization who work in North America (only two researchers came from Spain). The goal was to
strengthen the community of North American discrete-optimization researchers and to support the emerging
group on this topic in Mexico.

2 Highlights of the Meeting
Three general research themes emerged in the discussions, we present only a few of the new mathematical
advances we discussed during the meeting.

2.1 Mathematical Foundations
Combinatorial and algebraic structures are crucial in the modeling and solution of discrete optimization
problems. In particular objects such as graphs and matroids appear in multiple contexts. A number of the
presentations dealt with questions of fundamental structures. E.g., in the presentation of Dr. Araujo (UNAM,
Mexico) there was a discussion of open problems about cages. A graph is k-regular if all the vertices have
degree equal to k. The girth of a graph, denoted by g, is the number of edges in the smallest cycle(s).
The Cage Problem is related to the existence and construction of regular graphs with a fixed girth and the
minimum number of vertices possible. A (k; g)-graph is a k-regular graph of girth g, and a (k; g)-cage is
a (k; g)-graph of minimum order. Cages were introduced by Tutte in 1947 and their existence was proved
by Erdös and Sachs in 1963 for all integer values of k and g with k ≥ 2. Since then most work carried out
has focused on constructing cages with the smallest number of vertices. This graphs are important as the
exemplify extreme symmetry and can serve as tests for algorithms.

Araujo and several other researchers have worked in this problem since 2006. She has constructed, jointly
with several coauthors, different families of ”small” (k; g)-graphs for many values of k and g. During the
presentation, she explained the main techniques for constructing these graphs; using finite geometries. She
also discussed the minimal values for the upper bounds for the order of the cages known up to date. Of
great importance for this conference Araujo presented specific open problems, several participants made
suggestions on how to use computers to carry on construction of (k; 5)-minimal cages.
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Speaker Criel Merino (UNAM, Mexico) discussed some new work about matroids (matroids are abstrac-
tions of the nation of vector space generated by a matrix and of the notion of graph). Traditionally, the focus
from a graph theory perspective about the chromatic polynomial has been to find the positive integer roots λ,
which correspond to the graph not being properly colourable with λ colours. A growing body of work has
begun to emerge in recent years more concerned with the behavior of real or complex roots of the chromatic
polynomial. Perhaps one of the outstanding open questions concerning real zeros is to determine tight bounds
on the largest real zero of the chromatic polynomial. One such bound was given by A. Sokal, and more re-
cently by F. M. Dong, and depends on the maximum vertex degree of the graph. The corresponding invariant
in Matroids is the characteristic polynomial. In his presentation Merico proved that, for any prime power q
and constant k, the characteristic polynomial of any loopless, GF (q)-representable matroid with tree-width
k has no real zero greater than qk−1. This is a remarkable result.

Many of the presentations and discussions had to do with the geometric fundamentals necessary to solve
optimization problems. For example, semi-definite programming is a hot area of research, but to make
progress one needs to understand the geometric structure of the cone C of positive semi-definite matrices.
Speaker Greg Blekherman (Georgia Tech, USA), discussed subcones of low-rank inside the cone C. More
precisely a spectrahedral cone C is a slice of the cone of positive semidefinite matrices with a linear subspace
L. The ranks of extreme rays of spectrahedral cones have been a subject of extensive study. It is natural to
ask for what subspaces L do all of the extreme rays of C have rank 1? When L is a union of coordinate
subspaces the answer was given by Agler-Helton-McCullough-Rodman. It turns out that this question has an
unexpected connection to algebraic geometry and Blekherman presented a full classification of such spectra-
hedral cones based on the classification of small reduced schemes by Eisenbud-Green-Hulek-Popescu. It is a
deep connection between two seemingly distinct areas of mathematics.

Not only geometry can be useful within discrete optimization, sometimes the benefit goes in the other di-
rection too. One can approach difficult combinatorial questions using optimization. Thomas Rothvoss (Univ.
of Washington, Seattle, USA), discussed his new work in the theory of discrepancy. A classical theorem of
Spencer shows that any set system with n sets and n elements admits a coloring of discrepancy O(n1/2).
Recent exciting work of Bansal, Lovett and Meka shows that such colorings can be found in polynomial
time. In fact, the Lovett-Meka algorithm finds a half integral point in any ”large enough” polytope. However,
their algorithm crucially relies on the facet structure and does not apply to general convex sets. We show that
for any symmetric convex set K with measure at least exp(-n/500), the following algorithm finds a point y in
K ∩ [−1, 1]n with Omega(n) coordinates in {−1,+1}: (1) take a random Gaussian vector x; (2) compute
the point y in K ∩ [−1, 1]n that is closest to x. (3) return y. This provides another truly constructive proof of
Spencer’s theorem and the first constructive proof of a Theorem of Gluskin and Giannopoulos.

Currently a very active subject of research is to understand the combinatorial geometry of polyhedra,
in particular the combinatorial diameter of polyhedra. The combinatorial diameter of a polyhedron is the
maximum number of edges (or 1-faces) needed to connect any two of its vertices. Alternatively, it can be
defined as the diameter of the skeleton (or 1-skeleton) of the polyhedron. Motivated by the study of the
worst-case performance of the Simplex algorithm to solve linear optimization problems, one considers the
purely geometric problem of what is the largest possible combinatorial diameter of convex polytopes with
given number of facets and dimension. One of the most famous statements associated with the combinatorial
diameter is the Hirsch conjecture, stated in 1957 by Warren M. Hirsch. It claimed an upper bound of f−d on
the combinatorial diameter any d-dimensional polyhedron with f facets. It was finally disproved by Santos
in 2010. But today Finding a good bound on the maximal diameter D(d, f) of the vertex-edge graph of
a polytope in terms of its dimension d and the number of its facets f is one of the basic open questions in
geometry. There were a number of discussions and presentations around this subject. E.g., Antoine Deza from
(McMaster University, Canada) Talked about the diameters of Lattice polytopes (that is those polytopes with
integer coordinates in their vertices). He presented both older and recent results dealing with the diameter of
lattice polytopes. In a similar spirit, Tamon Stephen (Simon Fraser Univ. Canada) Spoke about abstractions
of the simplex method. In addition to the local edge directions used in the simplex method, a discrete set
of additional directions are available. Some of these pass into the interior of the feasible region or of mid-
dimensional faces. He and his collaborators studied the case where the available directions are the circuits
or elementary vectors, i.e. the support minimal solutions to the homogenization of the equations defining
the feasible region. These can also be thought of as potential edge directions of the system under varying
right-hand sides of the equations. Once a direction is chosen, it is followed as far as feasibility allows.
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A necessary condition for the existence of high-quality pivoting algorithms of this type is the existence
of short paths between the vertices of the feasible region in the sense of using only a small number of these
pivots and augmentations. This leads to the notion of the circuit diameter of a polyhedron P , which is number
of pivots in the longest minimal path between any pair of vertices in P . The circuit diameter is an analogue
of the combinatorial diameter of a polytope, which is the longest minimal path using only edge moves. Thus
the circuit diameter is a lower bound for the combinatorial diameter, and the bound is tight for key families.
Borgwardt, Finhold and Hemmecke (2014) investigated circuit diameter and showed that dual transportation
polyhedra have a very low circuit diameter, lower than their combinatorial diameter. They asked if the Hirsch
bound of f−d (the number of facets of the polytope minus its dimension) which was conjectured as an upper
bound on the combinatorial diameter, might hold for the combinatorial diameter. Stephen et al showed that
some known non-Hirsch polyhedra, notably the Klee-Walkup polyhedron, are not counter-examples to this
circuit Hirsch conjecture.

Also related to the graph of convex polyhedra (feasible regions of linear optimization problems) Walter
Morris (George Mason Univ. USA) spoke about the connectivity property of graphs of oriented matroids.
Oriented matroids are generalizations of convex polyhedra. Holt and Klee proved that if P is a d-dimensional
polytope and g is a linear function on P that is not constant on any edge of P, there are d independent
monotone paths from the source to the sink of the digraph defined by the vertices and edges of P directed
according to the directions of increase of g. Mihalisin and Klee later proved that every orientation of the
graph of a 3-polytope that is acyclic and admits 3 independent monotone paths from the source to the sink is
obtained from some 3-polytope P and some linear function on P. But this is not true in general! Morris proved
analogs of Mihalisin and Klee’s theorem and the 3 and 4-dimensional versions of Holt and Klee’s theorem
for oriented matroid programs. Here acyclicity is replaced by the requirement that there be no directed cycle
contained in a face of the polytope.

2.2 Models, reformulations and computational methods
The practical solution of discrete optimization problems depends on the use of structural mathematical prop-
erties to develop efficient algorithms. Often a problem is unsolvable directly, but one has to developed strate-
gies to approximate it. Several talks in the meeting discussed topics of the algorithmic solution of various
types of optimization problems.

Amitabh Basu (Johns Hopkins University, MD, USA) presented a survey of the latest advances to generate
cuts in mixed integer programming problems (an old principle of work is that by adding linear conditions to
the original formulation one can remove fractional solutions). Basu gave a rather useful introduction to cut-
generating functions. Cut-generating functions are means to have “a priori” formulas for generating cutting
planes for general mixed-integer optimization problems. Let S be a closed subset of Rn with 0 6∈ S. Consider
the following set, parametrized by matrices R,P :

XS(R,P ) :=
{
(s, y) ∈ Rk

+ × Z`
+ : Rs+ Py ∈ S

}
, (1)

where k, ` ∈ Z+, n ∈ N, R ∈ Rn×k and P ∈ Rn×` are matrices. Denote the columns of matrices R
and P by r1, . . . , rk and p1, . . . , p`, respectively. We allow the possibility that k = 0 or ` = 0 (but not
both). This general model contains as special cases classical optimization models such as mixed-integer
linear optimization and mixed-integer convex optimization. Given n ∈ N and a closed subset S ⊆ Rn such
that 0 6∈ S, a cut-generating pair (ψ, π) for S is a pair of functions ψ, π : Rn → R such that

k∑
i=1

ψ(ri)si +
∑̀
j=1

π(pj)yj ≥ 1 (2)

is a valid inequality (also called a cut) for the setXS(R,P ) for every choice of k, ` ∈ Z+ and for all matrices
R ∈ Rn×k and P ∈ Rn×`. Cut-generating pairs thus provide cuts that separate 0 from the set XS(R,P ).
We emphasize that cut-generating pairs depend on n and S and do not depend on k, `, R and P . There is a
natural partial order on the set of cut generating pairs; namely, (ψ′, π′) ≤ (ψ, π) if and only if ψ′ ≤ ψ and
π′ ≤ π. The minimal elements under this partial ordering are called minimal cut-generating pairs.

Several deep structural results were obtained by Johnson about minimal cut-generating functions for S
when S is a translated lattice, i.e., S = b+ Zn for some b ∈ Rn \Zn. However, a major drawback is that the
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theory developed is abstract and difficult to use from a computational perspective. A recent approach has been
to restrict attention to a specific class of minimal cut-generating pairs for which we can give computational
procedures to compute the values ψ(ri) and π(pj). We show how this is done when S is a translated lattice
intersected with a polyhedron, i.e., S = (b + Zn) ∩ Q for some vector b ∈ Rn \ Zn and some rational
polyhedron Q.

Given such a set S ⊆ Rn, define WS := Zn ∩ lin(conv(S)). A convex set B is called S-free if int(B) ∩
S = ∅. A maximal S-free convex set is an S-free convex set that is inclusion wise maximal. A well-
known theorem others). It is known a maximal S-free convex set B containing the origin in its interior is a
polyhedron given by

B = {r ∈ Rn : ai · r ≤ 1 i ∈ I}. (3)

There is an important theorem that says the following: define the following pair of functions associated
with B:

ψB(r) = max
i∈I

ai · r, πB(r) = inf
w∈WS

ψ(r + w) (4)

(ψB , πB) is a valid cut-generating pair. Moreover, the pair is “partially” minimal: for every cut-generating
pair (ψ, π) ≤ (ψB , πB), we must have ψ = ψB .

Thus, for every maximal S-free convex set B, (??) gives formulas to compute with the corresponding
cut-generating pair (ψB , πB). However, because of the partial minimality of (ψB , piB), it may be the case
that there exists a pair (ψ, π) with π ≤ πB and π(r) < πB(r) for some r ∈ Rn. There are several interesting
questions of research. For example, several participants of the workshop were interested on the classification
of maximal S-free convex sets. Another question is: Let S = (b+ Zn) ∩Q with b ∈ Rn \ Zn and a rational
polyhedron Q. Given a maximal S-free convex set B (??), how can we decide if (ψB , πB) is minimal? We
had several discussions about this and during the problem session, the topic was deeply analyzed.

Linear and semidefinite programming are two core optimization technologies with many important appli-
cations in mathematics, engineering, and business. An extended formulation is a higher dimensional descrip-
tion of the problem utilizing additional auxiliary variables. Sebastian Pokutta (Georgia Tech, USA) presented
a rather interesting survey about extended formulations. The main goal was understand how to reduce the
number of required inequalities in a linear programming formulation by representing a given optimization
problem in slightly higher dimensional space or ruling out the existence of such formulations. Recently, ex-
tended formulations gained significant interest due to fundamental questions in optimization and complexity
theory that are closely related to the notion of extended formulations. In fact, extended formulations provide
an alternative measure of ‘complexity’, which is independent of P vs. NP: we count the number of required
inequalities and the encoding of the coefficients is disregarded. This distinctive criterion makes extended for-
mulations very attractive as the obtained statements are not subject to any complexity theoretic assumptions
and it has been argued that the resulting notion of complexity is more in line with how we solve linear pro-
grams. Moreover, this notion of complexity might also provide supporting evidence for several conjectures
in complexity theory.

More formally, our setup will be the following. Let P = {x | Ax ≤ b} ⊆ Rn be a polytope representing
a combinatorial optimization problem of interest. A polytope Q = {x | Ex ≤ d} ⊆ Rm with m ≥ n is
called an extension of Q if there exists a linear map π with P = π(Q). The smallest number of inequalities
required in any extension of P is called the extension complexity xc(P ) of P . Any extension Q can be used
as a surrogate to optimize over P and thus we are interested in finding the smallest possible extension. We
therefore ask: What is the smallest number of inequalities required
in any extension Q of P?

Put differently, we aim for determining the extension complexity of P . In many cases using an extended
formulation can lead to an exponential saving in terms of the number of inequalities, i.e., a polytope P
with an exponential number of inequalities in the description Ax ≤ b can be expressed in slightly higher
dimensional space with a polynomial number of inequalities, allowing for efficient optimization over P via
linear programming (provided the coefficients are small). Examples include the Spanning Tree Polytope as
well as the extended formulations for the regular polygon, which can be used to approximate the second-
order cone efficiently. In several other important (and surprising cases), such as e.g., the Traveling Salesman
Polytope and Matching Polytope it can be shown that such compact formulations cannot exist.
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The theory also naturally extends to approximate formulations and many surprising examples have been
recently obtained. For example, it was shown that the MaxCut Problem cannot be approximated better than
1/2 with a polynomial size linear program. Also, the VertexCover Problem cannot be approximated better
than a factor of 2 using a polynomial size linear program.

Pokutta provided an introduction to extended formulations and survey many of the aforementioned results
in extended formulations, both in the linear and the semidefinite setting. He explained a reduction framework
for establishing upper and lower bounds for the size of exact and approximate LP and SDP formulations. This
framework allows for surprisingly simple and convenient analysis without relying on any heavy machinery,
making extended formulations very accessible without requiring any in-depth prior knowledge of those results
establishing the base hardness. I will conclude with various open problems both in the exact and approximate
as well as linear and semidefinite case.

Several other speakers touched on closely related themes for Speaker Levent Tunçel (University of Wa-
terloo, Canada) considered also extended formulations some and discussed the performance of some of the
strongest lift-and-project operators in computing the convex hull of integral points inside the given elemen-
tary polytope. The discussion included an analysis of the number of major iterations required, as well as an
analysis of the changes in the integrality gaps throughout these major iterations. Juan Pablo Vielma (MIT,
USA) consider another exciting topic in the challeng

We consider strong Mixed Integer Programming (MIP) formulations for a disjunctive constraint of the
form

x ∈
⋃n

i=1
Ci (5)

where {Ci}ni=1 ⊆ Rd is a finite family of compact convex sets. MIP formulations for (??) can can be divided
into two classes depending on their strength and types of auxiliary variables. The first class corresponds to
extended formulations that use both 0-1 and continuous auxiliary variables. Standard versions of such ex-
tended formulations have sizes that are linear on appropriate size descriptions of the convex sets (e.g. number
of linear, quadratic or conic constraints) and have continuous relaxations with extreme points that naturally
satisfy the integrality constraints on the 0-1 variables (such formulations are usually denoted ideal and are as
strong as possible). Extended formulations for polyhedral sets have been introduced by Balas, Jeroslow and
Lowe, for conic representable sets by Ben-Tal, Helton, Nemirovski and Nie and for sets described through
non-linear inequalities by Ceria, Merhotra, Soares and Stubs. The second class corresponds to non-extended
formulations that only use the 0-1 variables that are strictly necessary for a valid formulation. Standard ver-
sions of such non-extended formulations are also linear sized, but are often significantly weaker than their
extended counterparts. Non-extended formulations include big-M type constraints and ad-hoc formulations
for specially structured polyhedral sets

A common feature of both classes is the use of n 0-1 variables that are constrained to add up to one.
However, in the polyhedral setting different uses of 0-1 variables can lead to non-extended formulations that
are ideal and smaller than the smallest extended counterpart. This allows such formulations to provide a
significant computational advantage for disjunctive constraints related to the modeling of piecewise-linear
functions. In this talk we describe a systematic geometric procedure to construct such non-extended formula-
tions with a flexible use of 0-1 variables in an attempt to explain and expand on the success of the formulations
from prior work with S. Ahmed and G. L. Nemhauser. This procedure is based on an embedding of the dis-
junctive constraint into a higher dimensional space and leads to several theoretical questions concerning the
complexity of unions of polyhedra and the mixed basic semi-algebraic representability of unions of convex
basic semi-algebraic sets.

Oktay Gunluk (IBM Research) discussed how to derive cutting planes from extended LP formulations
Given a mixed-integer set defined by linear inequalities and integrality requirements on some of the variables,
Gunluk considered extended formulations of its continuous (LP) relaxation and studied the effect of adding
cutting planes in the extended space. In terms of optimization, extended LP formulations do not lead to better
bounds as their projection onto the original space is precisely the original LP relaxation. However, adding
cutting planes in the extended space can lead to stronger bounds. He showed that for every 0-1 mixed-integer
set with n integer and k continuous variables, there is an extended LP formulation with 2n + k− variables
whose elementary split closure is integral. The proof is constructive but it requires an inner description of
the LP relaxation. He discussed extending this idea to general mixed-integer sets and construct the best
extended LP formulation for such sets with respect to lattice-free cuts. We also present computational results
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on the two-row continuous group relaxation showing the strength of cutting planes derived from extended LP
formulations.

Another algorithmic structure that was discussed is the use of group theory. The infinite group problem
was introduced 42 years ago by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled ”Some
continuous functions related to corner polyhedra I, II”. The technique, investigating strong relaxations of
integer linear programs by convexity in a function space, has at times been dismissed as ”esoteric”. Now we
recognize the infinite group problem as a technique which was decades ahead of its time, providing the first
”cut-generating function” approach to integer programming. It may be the key to today’s pressing need for
stronger, ”multi-row” cutting plane approaches. Matthias Köppe (Univ. of California, Davis, USA) surveyed
the recent progress on the problem, focusing on algorithmic aspects, such as the automatic extremality test for
cut generating functions in the Gomory-Johnson model, its implementation in software, and ongoing work
on automatic discovery and proof of cutting plane theorems in the Gomory-Johnson model.

It is well-known that in many problems the constraints are sparse (few non-zero entries). Therefore it
makes sense to exploit sparsity in computation. Daniel Bienstock , (Columbia University) discussed how
to exploit structured sparsity in mixed-integer polynomial optimization Many ideas in (continuous) polyno-
mial optimization algorithms make use of the structural sparsity of the intersection graph of the constraints
(e.g., Waki et al, Lasserre et al). Often this leads to, e.g., sum-of-squares or semidefinite relaxations of
the original problem, whose solution is made more efficient by leveraging the sparsity; however concrete
convergence results are scarce. Bienstock described linear programming approximations to mixed-integer
polynomial optimization problems where the intersection graph of the constraints has fixed tree-width. The
LP formulations, given epsilon ¿ 0, are polynomially large in the problem data and in ε−1, and provably
attain epsilon-optimality and feasibility guarantee. As a consequence he showed how to obtain an LP-based
polynomial-time approximation algorithm for several problems arising in energy markets.

Also on the theme of using sparsity, Santanu Dey (Georgia Tech, USA) presented an analysis of sparse
cutting-planes for sparse MILPs with applications to stochastic MILPs. Numerous families of cutting-planes
have been studied for mixed integer linear programs (MILPs), significantly lesser understanding has been
obtained on the very important question of cutting-plane selection from a theoretical perspective. State-of-
the-art MILP solvers bias the selection of cutting-planes towards sparse cuts: This is a natural choice since
solving a MILP involves solving many linear programs (LP) and LP solvers can take advantage of sparse
constraint matrices. In a recent work (Dey, Molinaro and Wang) presented a geometric analysis of the quality
of sparse cutting-planes as a function of the number of vertices of the integer hull, the dimension of the
polytope and the level of sparsity. Dey discussed the question of understanding the strength of sparse cutting-
planes using completely different techniques, so that we are also able to incorporate the information that most
real-life MILP formulations have sparse constraint matrices.

Several speakers and discussions concentrated on trying to use very concrete structure in the format of
problems. E.g, Kurt Anstreicher (University of Iowa) spoke about the trust-region subproblem which is
the problem of minimizing a (possibly nonconvex) quadratic objective over an n-dimensional sphere. He
discussed considered a generalization of the trust-region subproblem that adds linear inequality constraints
as well as hollows, or excluded regions, corresponding to the complements of convex ellipsoids that are
contained in the sphere. He proved that this highly nonconvex problem can be solved exactly via semidefinite
programming with added RLT and SOC-RLT constraints so long as none of the linear constraints or hollows
intersect one another within the sphere.

Touching on another rather famous structure Alejandro Torrielo (Georgia Tech, USA) discussed relax-
ations for a Dynamic Knapsack Problem We consider a dynamic version of the classical knapsack problem
with the following formulation. Let N := {1, . . . , n} be a set of items. For each item i ∈ N we have a
non-negative, independent random variable Ai with known distribution representing its size, and a determin-
istic value ci > 0. We have a knapsack of deterministic capacity b > 0, and we would like to maximize the
expected total value of inserted items. An item’s size is realized when we choose to insert it, and we receive
its value only if the knapsack’s remaining capacity is greater than or equal to the realized size. Given any re-
maining capacity s ∈ [0, b], we may choose to insert any available item, and the decision is irrevocable. If the
insertion is unsuccessful, i.e. the realized size is greater than the remaining capacity, the process terminates.

This model and others like it have applications in scheduling, equipment replacement and machine learn-
ing, to name a few examples. They also generally reflect some trends in optimization research and its various
application, which have focused attention on models in which uncertain data is not revealed at once after an
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initial decision stage, but rather is dynamically revealed over time based on the decision maker’s choices.
The deterministic knapsack is a special case, so this problem is NP-hard, and some variants are known to

be PSPACE-hard. Because the decision maker can choose any item to insert based on remaining capacity, a
solution is not simply a subset of items, but rather a policy that prescribes what item to insert under all possible
circumstances. Research on the model has therefore studied heuristic policies and tractable relaxations. Our
focus is mostly on the latter, deriving mathematical programming relaxations that can be solved efficiently,
and which can be used to design high-quality heuristics. Specifically:

1. We introduce a semi-infinite relaxation for the problem under arbitrary item size distributions, based on
an affine value function approximation of the linear programming encoding of the problem’s dynamic
program. We show that the number of constraints in this relaxation is at worst countably infinite, and
is polynomial in the input for distributions with finite support.

2. When item sizes have integer support, we show that non-parametric value function approximation gives
the strongest known relaxation from the literature, which has pseudo-polynomially many variables and
constraints.

3. We theoretically and empirically compare these relaxations to others from the literature and show that
both are quite tight. In particular, our new relaxation is notably tighter than a variety of benchmarks and
compares favorably to the theoretically stronger pseudo-polynomial relaxation when this latter bound
can be computed.

Time permitting, we also discuss future work and open questions motivated by our results, including
the theoretical worst-case gap of our new relaxation, the possible strengthening of our relaxations, their
asymptotic behavior as the number of items grows, and others.

2.3 Applications
Fascinating applications motivate the mathematical methods of discrete optimization methods.

Speaker Dorit Hochbaum (Univ. of California, Berkeley, USA) presented a discrete optimization model
for clustering data which combines two criteria: Given a collection of objects with pairwise similarity mea-
sure, the problem is to find a cluster that is as dissimilar as possible from the complement, while having as
much similarity as possible within the cluster. The two objectives are combined either as a ratio or with linear
weights. The ratio problem, and its linear weighted version, are solved by a combinatorial algorithm within
the complexity of a single network minimum s,t-cut algorithm. We call this problem ”the normalized cut
prime” (NC’) as it is closed related to the NP-hard problem of normalized cut. The relationship of NC’ to
normalized cut is generalized to a problem we call ”q-normalized cut”. It is shown that the spectral method
that solves for the Fielder eigenvector of a related matrix is a continuous relaxation of the problem. In con-
trast, the generalization of the combinatorial algorithm solves a discrete problem resulting from a relaxation
of a single sum constraint. Hochbaum discussed the relationship between these two relaxations and explained
a number of advantages for the combinatorial algorithm. These advantages include a better approximation,
in practice, of the normalized cut objective for image segmentation benchmark problems. There are appli-
cations of NC’, as a supervised machine learning technique, to data mining, and it compares favorably to
leading machine learning techniques on datasets selected from data mining benchmark.

Justo Puerto from (Univ. de Sevilla, Spain) discussed another family of applications called the k-sum
and ordered median combinatorial optimization problems. In his talk, he addressed the continuous, integer
and combinatorial k-sum and ordered median optimization problems. He discussed the analysis of different
reformulations of these problems that allow to solve them through the minimization of mini-sum optimization
problems. This approach provides a general tool for solving ordered median optimization problems and im-
proves the complexity bounds of many ad-hoc algorithms previously developed in the literature for particular
versions of these problems.

Roger Z. Rios-Mercado (Univ. Autónoma de Nuevo León) talked about a rather interesting problem
related to the creation of districts (a problem that appears in product distribution and in political districting).
Districting or territory design involves locational decisions where a given set of basic or geographic units must
be partitioned so as to optimize some performance measure subject to pre-specified planning requirements.
Typical criteria usually sought are territory compactness, connectivity, balancing, similarity with existing
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plan, etc. Depending on the particular application, different models or dispersion measure can be used.
Rios-Mercado gave an overview of the main elements involving districting decisions, and present some of
the models, and solution algorithms (exact and heuristic) that have been developed for particular districting
applications.

Francisco Zaragoza ((UAM Azcapotzalco, Mexico) spoke about another application in scheduling prob-
lems that can be modeled with the Traveling Repairman Problem on a Line with Unit Time Windows. More
precisely, let G = (V,E) be a graph and r ∈ V . For each e ∈ E, let `e > 0 be the length of e. For each
v ∈ V , a time window [av, bv] is given. A repairman starts in vertex r at time t = 0 and moves trough the
edges of G at unit speed. The Traveling Repairman Problem consists of finding a route for the repairman that
maximizes the number of vertices visited during their time windows. This problem is known to be NP-hard
even when G is a tree and each time window has unit length (Frederickson and Wittman, 2012) or when G is
a path and time windows are arbitrary (Tsitsiklis, 1992). The complexity of the remaining case, that is when
G is a path and all time windows are unitary, is still open. Much work has been done in this case: there are
approximation algorithms with guarantees 8 and 4 + ε in quadratic time (Bar-Yehuda, Even, Shahar, 2005)
and 3 in quartic time (Frederickson and Wittman, 2012). The algorithm with guarantee 8 has been improved,
to get a guarantee of 4 in quadratic time (López, Pérez, Urban, and Zaragoza, 2014). All these algorithms
use dynamic programming as the main tool. Zaragoza and collaborators have improved the analysis of this
algorithm to show that it guarantees less than 3. The main tool was setting up a linear program that describes
the possible outcomes of the dynamic program, and solving it to find the worst possible outcome.

3 Outcome of the Meeting
The workshop was quite successful. We had a total of 42 participants from institutions of Canada, Mexico
and the USA. The themes discussed at the workshop were an excellent representation of the very latest
trends in research; for example, there were several presentations devoted to discrete-optimization problems
using non-linear constraints. The presentations each day touched on more than one topic to provide variety
(see schedule), It is worth stressing that several joint projects were started as a result of the meeting and the
problem sessions were extremely active. Several collaborations were started during the meeting and we know
they will lead to interesting outcomes. Many of the participants expressed their thanks to the wonderful staff
support we received, from the early organization (e.g., sending invitations) to the moment of the conferences
where CMO staff took extremely good care of us!! Thanks!!


